ADVANCED

3D

GAME PROGRAMMING

ALL IN ONE

KENNETH C. FINNEY

Advanced 3D
Game
Programming

All in One

Kenneth C. Finney

THOVISON

Professional m

© 2005 by Thomson Course Technology PTR. All rights reserved. No part of
this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system without written permission from
Thomson Course Technology PTR, except for the inclusion of brief quotations
in a review.

The Premier Press and Thomson Course Technology PTR logo and related
trade dress are trademarks of Thomson Course Technology and may not be
used without written permission.

Apache is a trademark of Apache Software Foundation. PHP is a trademark of
The PHP group. QuArK is a trademark of SoundForge, a VA Software
Corporation. Mini-Python is a trademark of Python Software Foundation.
MilkShape is shareware offered by chUmbaLum sOft. UltraEdit is a
trademark of IDM Computer Solutions, Inc. The Wilbur executable and all
documentation are copyright 1997-2005, Joseph Slayton. Rocket Bowl, Dark
Horizons: Lore Invasion Demo, Marble Blast Gold, Orbz, Think Tanks, and
the Torque Game Engine are trademarks of GarageGames.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s technical
support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted throughout
this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Thomson Course
Technology PTR from sources believed to be reliable. However, because of
the possibility of human or mechanical error by our sources, Thomson Course
Technology PTR, or others, the Publisher does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from use of such information.
Readers should be particularly aware of the fact that the Internet is an ever-
changing entity. Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this book
are also available individually or can be tailored for specific needs.

ISBN: 1-59200-733-3
Library of Congress Catalog Card Number: 2005927437
Printed in Canada

0506070809WC 10987654321

THOMSON
e

COURSE TECHNOLOGY

Professional m Technical m Reference

Publisher and General Manager,
Thomson Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Jordan Casey
Acquisitions Editor:
Mitzi Koontz

Senior Editor:
Mark Garvey

Project Editor/Copy Editor:

Jenny Davidson

Technical Reviewer:

Jacquie Finney

Thomson Course Technology PTR

Editorial Services Coordinator:
Elizabeth Furbish

Interior Layout Tech:
Bill Hartman

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Katherine Stimson

Proofreader:
Sara Gullion

™ Thomson Course Technology PTR, a division of Thomson Course Technology
25 Thomson Place ® Boston, MA 02210 ® http://www.courseptr.com

This book is dedicated to my father and mother,
Leonard and Jean Finney. I love you.

Per Ardua ad Astra.

ACKNOWLEDGMENTS T

Programming All in One. I hope you find that this book fills the bill as well as it

Iwant to thank all you kind people who bought my first book, 3D Game
did.

I also want to thank my editors, Mitzi Koontz, Jenny Davidson, and especially my
wife, Jacquie Finney for their collective patience, guidance, and the occasional kick
in my assets. Oh yeah, and for not rolling their eyes at me too many times. Also, I have
to thank my two volunteer editors: my sons Indy and Lucas for their biting critiques
laced with unabashed boosterism.

I also want to acknowledge Ed Maurina and the great work he is doing with his
Essential Guide to Torque and the stuff he has written for the GarageGames (GG)
online docs.

Speaking of GarageGames, we all owe a debt of gratitude to Ben Garney for his awe-
some descriptions of some of the inner workings of Torque. When Ben gets his feath-
ers ruffled, it’s a thing of beauty to witness him wreaking order and knowledge upon
unsuspecting bystanders, leaving whirlpools of understanding in his wake when he
goes on a verbal rampage. Then there’s the ever-patient, mentally nimble, and coolly
competent Josh Williams, who once had the graciousness to check whether I would
mind hearing some advice from a kid (him). Well, duh! Good advice is good advice
no matter where it comes from. Now go to your room.

Acknowledgments

A few other members of the GarageGames community contributed to this book in
various ways, knowingly and unknowingly. Paul Scott provided useful information
in understanding SimSets. Nelson A. K. Gonsalves has some great ideas about how
NPC conversations should take place. Mark Holcomb did some really cool things
with sliding doors. The entire GarageGames online forums are an invaluable resource
in their own right, providing a ton of added value that would be extremely expensive
if you had to go out and buy it. There is a tremendous amount of knowledge, skill,
and innovation in that group. As I utilized their ideas, I sometimes modified them to
suit my own needs, and so any deficiencies are my own.

I would also like to thank the faculty and staff at the Art Institute of Toronto, espe-
cially Predrag, Lisa, and Paul, for their support. And I thank my students for their for-
bearance, especially John and Ali, who’ve ended up as de facto guinea pigs for
everything new I want to try out. Hey look, where’d that stick come from?

Regards,
Ken

vi

ABOUT THE AUTHOR 1

enneth Finney teaches game design, development, and prototyping at the
Art Institute of Toronto where he is Lead Faculty Member in the Game Art
Design program. He began programming in 1974 and remembers that
old HP-1000 with its paper tape and punch cards with a perverse fondness. Finney
had been a software engineer from the mid-'80s until the late *90s focusing on
advanced technology development. He was a recipient of the prestigious Conference
Board of Canada ITX (Innovation in Technology Excellence) Award in 1997 for his
work on “InScan,” a high-speed document scanning system. He has been an Associate
Professor at Seneca College at York University in Toronto, teaching technical writers
how to survive in a software development environment. Ken is the creator of the pop-
ular Tubettiworld “Online Campaign” Mod and the “QuicknDirty” game manage-
ment tools for the Delta Force 2 game series from NovaLogic. He is currently working
on completing a new and unique action/adventure game based on the original
Tubettiworld design using the Torque Game Engine.

CONTENTS]

INErOUCHION! ox sior vion wavmmrmowmvoe e s Seew e e w XV
PART |
ADVANCED SCRIPT PROGRAMMING 1
chapter 1 A Target-Rich Environment 3
TOrQUESERTDE: «cnnn mvwmmin amemuress owssass Seeas 99 Qs 55 3
3D Math Preview 4
Playing AFOUNT: s aivs swavnts sivni s sviovees ssioe o5 dmeies o 6
Making IEHURE & cuswoss svmais smmmein e s e e 6
NMakingBOlS cinarms oo o o s Sone: L S ol 7
ALCONCEPREE conn smsmniin parmesines sviaivieslfe avivmms 5% Rviav sis 8
Hands On .ot e e e s 10
Group:DYHamiICs .o oiosos e wiasies o6 Sien sse sy avkmat 11
Getting Al AFESY-FArESY v o simimmm saarssn swa s mmee 1
Details, Details i 12
POIRAIS) oo wcvmmmmiins smmm @riseransn Braleeranes Samsninen Sensaned 13
Let There Be Light! 14
Skin Shedding = imenvans s avess s veas M ss e 16
Moving RIGPEAIBNG o i v i vaams v wiiam weim 17

vii

viii

Contents

chapter 2

chapter 3

Working with TorqueScriptovvviinnnnnn 19
Torque Project Organization0 covuivunnn 19
Installing Torque 21
Quickie TorqueScript Briefingo i, 22
Problem-Solving Techniques 24
Logging ... s 24
Checking for Compiler Errors 25
Cleaning Out the Byte-Code Modules 26
Using Debug Output Statements 26
UISIHGRACE! wuinre ca-sosmian v aiiinins s aiing saeisaline s s o 28
USIiNg dUmMpP Lt e et e e 29
Using the In-Game Object Browser 33
The TorqueScript Source Debugger 34
Objects) Lo ole e ofs S sl Slon seln o pobatn oo gelaibd g 45
Creatifg OBJECS! cu vwnes v s wmar i s S A ey 45
Working with Objects a7
Datablock OBjects o cnims Sv i sweses DoEssas avens 49
Creating Datablock Objects 53
Declaring Datablocks iiiiiiin... 54
ScriptObjects: « csawn i ssawn s saiss % FaasE FEEERRE FRIEHTH 55
Creating a ScriptObject 55
Using ScriptObjects: ~uui v avvsiis veliaeni osise &8 v, 55
Working WIthUEiles: - -: cove sn s sme e ommmess aEm e 57
The Export Statement, 57
FileQBJetts vvonism samn s svnwi avvan e o s sle slsan 57
Working with Stringsot 59
Taaged StrNGS: i« s ssisn sis sindisn 5o asi s oo s o1é 5o e aen 59
ESCape SEqUENCES . v o sinsiis s waieis siers Siarils sisils s 60
Moving Right Alongt 61
Vectorsand Matricesoiviiinnnnnnnn. 63
Understanding Vectorst 63
WHETE A VEEor VIEOF? « snomons summmsss Sumaele mumass 64
USINg VBCIOrS .\t e et et 70
Understanding Matrices iiiuiniin.n.. 80
The Matrix: Explanations 81

Using Matricesiiiiiinii e 82

Contents

Applied Techniques Using TorqueScript 87
A Moving Programttt 88
Rotate L « onnmome sranm e sstasi 5 i ma vl e sy 93
MoVING RIGRE AIONG < iacsimoe i susisims oo ame s i 96
chapter 4 3D Using TorqueScriptvv i iiinnninnnnnnns 97
SWINGING DOOTS ..ottt et et e 97
DOOT RESOUFCES 1. oii wiuiaiiie 5iv sia disn o ai aisie i il S et 98
DOOFr COAE .ottt i it e 100
Testing the SwingingDoor cviuinun.. 114
SHAING DIOOTS - nvvan vwmaamn i ws e e aames we s 116
DOOr RESOUICeS . ..ottt et e e e e e et 116
DOOFCOAE suwness vipaesn vamii 55 Foeis si oo vrans 116
Testing the Sliding Doorcciiiiiiiinnnn. 126
Warping ..ot e 126
Leaving the MissionAreacciiiuinunnn 127
Getting Readyottt 128
The SCHptiCode: = suniiman avene i oo Do aaen svea 130
Testing the WArD . ceacvain swaan i s, smesiaiie e s 132
Moving Right Along ...t 132
PART |l
ARTIFICIAL INTELLIGENCE 133
chapter 5 Easing into Artificial Intelligence 137
WhatlEIsniEa Yet o sviaass sviem 3 vomy S e e 138
WHAt IS MOSHIV: v st tus swasme snsmiamn swese 139
Searchingand Routing 140
Rules and Expert Systems ciiuivunnn 140
Logicand UnRCertainty .cs csseinas wiise s s wiis 142
Natural Language Processingcoouvunnn 143
Neural NetWorks: . .aousrenns s gu s wm e ae s 144
GroupThink .. . e e 146
What the:Near Future Holds ... ciuvivi v voviiavie v i 148

MoVING RIGhECAIONG . csssams msissie s marssme s ensis s sm e 149

Contents

chapter 6

chapter 7

chapter 8

Using Al INGaMeS « vsc oui o o:dlanie aliis s was bsin s 151
BERAVIOK roouns sormommass srmvivein an s o Sns And i e, S50 000k 151
Perception e 152
ACHION =i wsennden Sohim o ool & amems oy s adewid 153
REACHION & covvvmn wsncon sve st s s el sisiats i s 154
Learningt e 155
WHatS A 'BOL?" o urewins smama s e i) Bisass S5 (s $6aass 156
OPPONEATS «ivvims cmimvim s 69 e s sosEEms ¥ 5 158
AlBES: sxss nmamis P S R T A S N R s 162
Card Carrying Party Members 164
Group Behaviorsciiiiiiiiiiiie e 166
APain INTNe 'BOt & cuwss va avs e e sl v 167
MoVING RIGhEAIORG s sossvisss simisn sin s ssissszn s eisasisin s s 168
Artificial Enemies 169
Stationary Al ... e 170
Preparation oy v 88 debm o SR o S we s 171
CodeModiTIcaionS! cura om mesrer s s ssowma 177
The aiGuard Module iiiiiann.. 177
Standing on Guard forThee 198
Following Paths i 199
Makingthe Path: : iuess o8 swess i aveies miavnes el 199
USITg tha Path. . cmvsom s e ue s oesmass me e 201
Chasing ..o it e 204
Moving Right AlONG i i v sswan i simms a5 siame i d0visans 206
NtETactiVe Bl vs van vow sas sesaosse o9 B D55 GEE § 207
The APProachi cocimcse s s smsias ss misan o6 esams o e 208
Architecture i e 208
The'Code: vany Sty GoRes Fe R S S e 210
Preparation’ wocees s ammmm s s s e 210
The AlTServer Moduleo .. 213
The AlTClient Modulecoiiiirnenn.. 220
The AlTCommands Module 227
The AITGui Modulettt 230
AITSCART FIlEE! s siwmsme s aissise som s s Sl ot v s 234
AlT RESOUICESttt it i e et i eaee s 236

Making an AIT Scripto i 237

Contents

Testing the Al Talk System 238
Moving Right Alongt e 240
chapter 9 Group BEhaViOrs i+ s i35 cen sns ik vk G5 vas 2a5 o 241
APerfect SWarMY oa as sxivivs i 5v s ¥ svieiis ¥ Sraiis i s 242
Preparation .wome amuwame s e s saiimste 9 s 242
The Swarm Module it 244
Testing The COde & voiaein Gam e e i i ai@in. o 252
ACHASIDG SWAIN vnvus coionranion amiisen v amisim sutsieimsm, v s 253
TestingtheCodet iiiiiinnnnnn 255
Moving Right AloNg «: cemvams s s amese wesasss we e 256
PART 111
ENHANCED GAME PROGRAMMING 259
chapter10. 'Damage Control ... s« wes comeen e sins s sas wan o 261
O B S e e e T s 262
Key Features in the player.cs Script Module 265
Addingan EnergyBarot 280
Linking Damage and Energy cciiiiuinnnn. 283
HIt LOGations : casaiss aaiesen aemmi 55 Jeibns i vl o and 284
Bang; Bang, BOOM!Y .o v wassn s sosvsies serasenis o o 285
Preparationttt e 287
THECOHE: suwmosun swmmams Gumvet @ SEFNLATIRHENYE SIwed 289
Testing the Amazing Exploding Barrel 297
HotWhEelS :x copsmmst svresss vonam s voel s s e 297
BUGEY COUE | o amn ssnnwamne smmere s s, s siuias v s 297
Blastingthe Buggyooiiiiiiiiinennnnnn.. 301
Living in Glass HOUSESttt 303
PrEpEration wocems comsemg wossmsi s Guismeee s sme e e 304
TReCode: syvimsnss st 5T i e A e A 307
Testing the WIindows: .. o csaes v s smsisans we s 317

Moving Right Along 317

Xii

Contents

chapter 11

chapter 12

chapter 13

MakInG TEREA : con vas vas s i s ses wus o b 319
RESEWOHdTErrain s smsvvin s s cnmmans i s0wss 320
BENY FORMIEES, - coume somummm s sisvemsm s s massnas e mins 320
DEM to Heightmap oo s conie os s o swamn o v 322
Prepfor TOrGUE: . cnvcn o smacn sresiacen sesumi s sns 325
Heightmap to Game Terrain covvunn.. 325
VBGeTation' .u :wicccin sooma in S on S amm S ems D s mmed 331
The Forest it 331
The NMeavoW! z-as snsig o i3 M eis Sare s S e 333
Moving Right Along .. ccawe e semen ie s sasmmes we s 337
SPIAING IEUD (oo wivin scons wsine dimameminraso s i ses sen & 339
SUNShiIiNE oN MY SOIdIEXS .« v s wiseie o mmsiseie seimisin s e 339
SURNNISE: SUNSEL: . . . covie s vie cims o mim somimis s won 5re s os 8rai 343
DOING HWIRFIATE i vs ansouie ww snsessne ssmninin wisarss 347
Water, Water, Everywhere! 351
Water Propertias . ceoon ss dnims v dsni o S ue s 352
Water DaMATE <cou oo am smsvsare sresissarsre s spamemine s s 361
Walkingin Water it 364
Moving Right AfORG =« swieen oa weien o swaen anasiaeem draas 365
Online Game Services UsingPHP 367
PHP ad APAthE .o cc somvsom sia snmivarm i srsmeris s aiiss, s 368
Installing Apache i 369
St s svwsme svies ve avaree an FEeEE SRS Sl 370
IRSEAIING.PHP iis comnsvm s smssere s anmscers v lenamm s 372
Linking Apacheand PHPiiviuu.. 375
In-Game News Service Usingthe Web 376
In-Game Info Grabber 377
AUThentication s flds o Feaera b Sl s s SR 382
The PHP Authentication Code 382
The TorqueScript Codeoviiniiiiiiinnnnnn 383

Moving Right Along s ccaen v snnsis wn s vesamas we i 392

Contents Xiii

PART IV
ENHANCED GAME MODELING 393
chapter 14 Structure Modelingcoiiiiinininnnnnns 395
Levelsof Detail 397
ADEMORSEration & wovaows dwsei s SR iRy SR 397
LEVBISOF DEEANl e smmmnnns somwsomm s s siammer smmine 401
Implementation 404
The'DaWlsin the DAl o v i vman voaareas wmmemd 412
EMEIEIES] o sosimusanons mpmssmone nusmo s s e s ae 414
PORtAIS: oo somaass imaess (uems &0 e o sums o e 414
A DETTONSIFAtON & snosenmn i Sipemn o memm a e 416
Creating and Placing Portals 47
LIGhtS coouenn svmernns sonsmsi s s e S ams s mas 419
StaticLights i e 420
Animated Lights: o cossmis aaein o siinn st aisas. vieea 421
Testing the Eights: . coacean avcen on sosen smsnasss e s 423
Moving Right Along 424
chapter 15 ShapeModelingcovviiiiiiiirrnnnnnns 427
lavelsioriDetalll = 0un o snrmmm: o o fa e e fa e 428
Creating Crates . cvovasn wesisa vl woes o sivai v i 429
Player Avatarsot 435
Moving Right AIONG s sensniss suiss on s o Suas i ed 443
chapter 16 “Vanable SKins . .o ven e v s ms v s v wes o 445
MMM, CEatEs! vonn avameam woiew s meesw wmemeross we s 448
Resources and Preparationooviununnn 448
Code: vosn sucmmsn waesian NEETe B DEEE BN R e 449
Using the Variable Skin Crate 451
Ready, Set, GO!ottt e 454
Ready.se s sxvirwsn smewves switen v S0t o5 S0@T6 E51557 455
SOL.i, wcomm snwimterane emmEraTaITe ST ai S R M e 455

Xiv

Contents

appendix A

appendix B

SWapPINGg BN thR FIV' o« v s smsen s smianie watemsisers a e 460
SetUD e 460
COUE: vve: s e GG S S S SO 461
ABUSINGME:BOX:: s1a amsrns s wssvors s omsnsiais. s toitaai i sk siains 465

Moving Right Along o svvms s Seiss ¥ snieiis v o s sy 465

Eiffal TROUGHES v i svsvasaomn anmvssan s amea e, s s anse, s sises 466

The Torque Reference . v.: covwiwee wws was wwi w4 467

TorqueScript Function Reference 468

Torque Reference Tables 537

Additional Resourcesoviiiinnnnnns 557

Code Resources Added to TGE Build for This Book 557
HITBOXBS! i suviosvscois s sie syt i aissmm FaUssmsin S8 amng 557

Game Development Resources on the Internet 557
Torque-Related Web Sites 558
Game Development Web Sites 559

Game Development Tool Reference 563

Shareware and FreewareTools 563
Modeling e e 563
Programming Editing .o o canen v svaas svsvais v 564
ATHIEAItING! o svsmummi s snwmwmm s wssm ol s 565
OFREE . o coniisis s ssmions 8 Fiowmohe A, 1 SaLesS B e i S8 o 565

RETAIITOOIS < sovmivamis immnsmna ss asvensnn Sivmseiaiavs wilsdian v i 566

GNU General Public License, 568

INTRODUCTION —

“Hi, I bought your book, and I think it’s great! But how come you didn’t cover this, and
you didn’t cover that, and you only briefly touched on the other thing? Huh? Well?”

I've received many complimentary e-mails from satisfied readers of 3D Game
Programming All in One (“3DGPAI1” for short). But more than a few people were
beating me up for not covering one favorite topic or another. Fortunately for me they
haven’t organized—I don’t relish the idea of looking out the window one night and
seeing a gathering of villagers with pitchforks and torches.

But they aren’t just a mob of villagers, they are people like you—people who love
computer games and believe that they can make a better game than the big game
development software houses. They are on the march to change the game develop-
ment world.

And you know what? You (and they) may be right. The problem until very recently
has been that many creative and talented people don’t have the cash and other
resources required to spend on the development costs and game engine licensing
that’s needed just to get to a starting point.

This is changing, and books like this one and 3DGPAII, and game engines like the
Torque Game Engine are the reasons why this change is happening. The Indie game
movement is about empowerment in its rawest form.

XVi

Introduction

That Other Book

If you haven’t read 3DGPALII, let me just bring you up to speed quickly: It will give
you a rounded education in using the Torque Game Engine to develop 3D games. It
covers programming fundamentals and programming with Torque, 3D basics, 3D
modeling using MilkShape 3D and QuArK, audio engineering using Audacity, tex-
ture development using Paint Shop Pro, and it gives you a ton of exposure to
TorqueScript. Even though there was a comprehensive spread of topics in 3DGPAII,
it was not possible to cover everything in those 800 pages of material, hence the vil-
lagers with the torches.

About This Book

This book is going to take the next step, covering many of the more advanced areas,
like artificial intelligence and dynamic skins, as well as digging deeper into the work-
ings of a game engine. We'll also rummage around in the TorqueScript goodie-box
to discover what mechanisms it has that will give you a boost into the realm of game
development.

What You Need to Provide

You can leave the pitchforks and torches at home. However, you will need a reason-
ably capable computer system. You really should be using Windows XP by now,
although other flavors of Windows will work.

And this is not quite a beginner’s book like 3DGPAI1 was. If you've bought and used
3DGPAII to good effect, then you will certainly be in good shape with this book, but
it’s not entirely necessary.

Skills

If you are a somewhat accomplished programmer (regardless of the language), or
have prior experience with modeling using tools like Valve’s Hammer or 3D Max, you
will most likely be able to get along just fine in here without being familiar with the
introductory level material in 3DGPAIL.

You need to be familiar with finding your way around Windows folders and hard
disks, using the Windows command shell (cmd.exe), and creating shortcuts and edit-
ing their properties.

Introduction

System

You need a Windows-based computer to use this book (the following table outlines
the minimum system requirements). It is possible for Macintosh and Linux users to
use this book to create a game, because the game engine used—Torque—is also avail-
able for those platforms. However, not all of the required development tools are avail-
able on Mac and Linux, so the book’s focus will be on Windows on Intel.

System Requirements

processor Pentium III/800MHz minimum

operating system Windows 98/ME/2000/XP

video card 3D graphics accelerated video card, NVidia GeForce
2-32MB equivalent or better

display 17-inch recommended

input devices keyboard and mouse

memory 128MB minimum with 256MB recommended

hard disk 4GB minimum

CD player CD-R minimum

I also suggest that you have a decent modern sound card and broadband Internet access.

What the Book Provides

To truly get the maximum benefit from this book, I encourage you to purchase your
own license for the Torque Game Engine, at the stunningly reasonable price of $100.
If you buy a license, you can go to the GarageGames site (www.garagegames.com) and
download the latest versions of community resources offering alternative techniques
to those used in this book.

The version of Torque used in this book is based on Torque Release v1.3. It is exactly
the same executable and demo code as the downloadable Torque Game Engine demo
found at http://www.garagegames.com/makegames/. All of the chapter exercises in
the book use TorqueScript—there is no discussion, nor inclusion, of any core engine
code or the C/C++ code modules that comprise the Torque Game Engine.

The Companion CD

The companion CD contains quite a few resources, including Torque and several cus-
tom builds, TorqueScript game code source and artwork resources, development tools,
and demos of Torque-based games.

Xvii

Xviii

Introduction

Source Code

The book’s CD contains all of the TorqueScript source code in sample form and final
form. The samples will be aligned with the contents of each chapter. The scripts for
completed demos will be included in the chapter folders.

Game Engine

The CD contains the complete Torque Game Engine with its executable, DLLs, and
all required GUI and support files. The Torque Game Engine is a fully featured game
engine that includes advanced networking capabilities, blended animations, built-in
server-side anti-cheat capabilities, BSP support, a strong and complete object-
oriented C++-like scripting language, and many other advanced features.

Tools

Most of the “standard” set of tools (as established in 3DGPAI1) is also provided on
the companion CD, even though we will not be covering their use in detail. They are
included for your convenience. These tools include the latest version of MilkShape
3D, QuArkK, and UltraEdit-32.

Extras

There is a folder on the companion CD called EXTRAS that contains demos and
games made with Torque for Windows, Macintosh, and Linux. Additionally, the
Macintosh and Linux v1.3 Torque Game Engine demo installers are included in the
EXTRAS folder.

Now Go Make Better Games!

I keep telling anyone who'll listen: If you want to succeed as an independent, you need
to be enthusiastic about what you are doing. You aren’t going to be a smashingly suc-
cessful Indie developer if you merely sit back and make cold, calculated, profit- and
loss-oriented business decisions. That guy over there with the glint in his eye and the
fire in his belly is gonna stomp all over you!

Well, you know what you have to do, don’t you?

Stomp all over him first, or join forces with him. Armed with the knowledge this book
will provide, the choice is yours.

PART I

ADVANCED SCRIPT
PROGRAMMING

he workhorse technology in any game engine, including Torque, is its script-

ing capabilities. In a certain sense, a game engine is a collection of enabling

technologies, like a renderer, resource manager, physics code, and so on.
Scripts are the glue that connects these technologies to each other in a way to create
a workable game environment.

In Part I we'll learn more about TorqueScript and how to apply it to game develop-
ment situations. We’ll look at how to use TorqueScript for mundane things like print-
ing text strings to the console screen and log file, and sexy things like using matrix
and vector math to move stuff around in a game world.

This page intentionally left blank

CHAPTER 1 i

A TARGET-RICH
ENVIRONMENT

n my first book, 3D Game Programming All in One, we went on a journey of dis-

covery in the wilds of the 3D game development jungle. Starting with an exam-

ination of the 3D game industry, we then made our first tentative forays into the
fields of programming and three-dimensional concepts. After that we marched across
the vast steppe of Torque, using it to create some introductory single-player game
environments. We then flanked through the verdant forests of game artwork, build-
ing models and textures. All the while we refined our understanding of game devel-
opment and our appreciation of how Torque can carry us through the rough parts.
When we came out the other side, we had seen everything to be seen, and spent a fair
amount of time looking at many things we encountered along the way.

However, many of the features and concepts we encountered only received the shal-
lowest glance. This is in no small part due to the richness of the game development
scenery. In the chapters to come, we will return directly to some of those places and
dwell longer, learn more, and develop a much more complete understanding.

TorqueScript

The workhorse technology in any game engine, including Torque, is its scripting capa-
bilities. In a certain sense, a game engine is a collection of enabling technologies, like
a renderer, resource manager, physics code, and so on. Scripts are the glue that con-
nects these technologies to each other in a way to create a workable game environ-
ment. In Part I of the book you’ll learn more about TorqueScript and how to apply
it to game development situations.

Chapter 1 = A Target-Rich Environment

Scripts are often used in this way because they allow the ad hoc creation of code to
do things like manage and control the game engine or to formalize game rules.
Programmers don’t need to recompile program code to test it. It’s a fairly simple oper-
ation to change or add a script; tell Torque to reload it, and see the results immedi-
ately. Torque, for its part, when told to load a script, will automatically recompile it
into a byte-based encoding called p-code, if an encoded version doesn’t exist, or if
the source version is newer than an existing encoded version. Here is a brief example
of some TorqueScript source code:

if (%obj.getState() $= "Dead")
return;
#obj.applyDamage(%damage);
%location = "Body";
#client = %obj.client;
#sourceClient = #sourceObject ? %sourceObject.client : 0;
if (%obj.getState() $= "Dead")
{
#client.onDeath(%sourceObject, %sourceClient, %damageType, %location);
return;
}

TorqueScript is a very flexible language that offers pretty close to all the features and
capabilities of a modern programming language. It incorporates an object-based par-
adigm alongside a procedural approach and syntax that will be very familiar to those
who are already versed in C/C++.

As you will discover, one of the most important concepts in Torque is the datablock,
and how it works. TorqueScript has intrinsic support for datablocks.

The Torque Engine exposes a great deal of its internal functionality via TorqueScript.
All of the programming that we will do in this book will be done using TorqueScript.

3D Math Preview

An important mathematical capability in 3D games is the ability to calculate the coor-
dinates of destinations in 3D space based upon where you are now, how far you want
to move, how fast you want to move, and what directions you want to go when you
move.

Vectors are the tool to use in most cases where moving from place to place is an issue.

3D Math Preview

Figure 1.1 shows, in conceptual form, how vectors can be used to navigate a pathway
through an obstacle course. We can tell the boat how to get through the barriers by
feeding it the needed vectors, from A to B, B to C, and C to D. We determine each
new vector by locating the safe turning points, and then calculating the required vec-
tor. When we inform the boat of each vector, we basically tell it to point in a certain
direction and to sail in that direction for a certain amount of time.

Figure 1.1 Using vectors for navigation.

In geometry, the only properties a vector has are displacement and direction. Vectors
are not bound to any specific location in space. This means we can apply the same
vector in an operation to any point, or vertex, of an object and obtain different results.
Note that the results will be related in several ways. They will be mathematically
related because the same vector was used, and they will be spatially related in exactly
the same way they were before the vector was applied, since the vector was the same
in each case. The triangle in Figure 1.2 has the same vector (dashed, arrowed lines)
applied to each of its vertices. Notice how the resulting triangle has the same shape
as the original. It’s just been moved.

6

Chapter 1 = A Target-Rich Environment

Figure 1.2 Using the same vector three times.

Now, a vector is really a specialized form of a matrix—a single column matrix, in fact.
We'll look at matrices in more detail in Chapter 3 when we dive into vectors.

Torque has built-in functions for doing vector math and solving all of the possible
vector-oriented problems you can encounter.

Playing Around

There are many aspects to making an interesting and fun game. The game play fea-
tures that appear in a game can play a huge part in the success of a game. Many times,
a game play feature is the factor that makes a game truly unique. An example of this
is the “one shot, one kill” capability in the original Delta Force game. Prior to its
release, first-person shooters tended to merely accumulate “hit points” until enough
damage was inflicted on a character to kill it. Now, a player could take a sniper rifle,
go hide in the hills, wait for an enemy to appear, and take him out with a single shot
to the head.

Making It Hurt

As you've just seen, it’s one thing to be able to assess a general damage value for a
character, but many games like to be able to assess damage to specific parts of a
player’s character, like arm injuries, head shots, and so on. We are going to use Torque’s
built-in ability to track hit locations and use it to provide a more precise form of dam-
age assessment. Figure 1.3 shows an orc model with its collision box outlined in white.

Torque provides us with a way to figure out where on the model a hit occurred. We
can also apply the same concept to other objects. Imagine shooting the leaves and
branches off of trees.

Making ‘Bots

Figure 1.3 Player model collision box.

We will also discover how to make virtual pyromaniacs happy. We will blow stuff up
and set cars on fire. Just your typical sunny summer’s afternoon fun and frivolity.
Except, of course, nothing real will actually be damaged. We’ll show a dune buggy
model how to have a really bad day at the races, while you, as the player, use it for tar-
get practice!

And what game would be complete without the sound of smashing windows? Figure
1.4 shows what happens when a rambunctious orc waves his exploding-bolt-firing
crossbow around indiscriminately

Making ‘Bots

Artificial Intelligence (Al) is a big, broad topic; we are generally only interested in com-
puter-controlled game characters and their behavior, and that’s the subject matter in
Part II of the book. In game development, there are specific areas where the use of Al
techniques is well-understood and well-developed. There are other areas that are cer-
tainly at the leading edge of Al use, at least in a game context.

How we refer to Al varies a bit depending on the game genre or community we are
addressing. In general, the term “Al” is used. However, many action-oriented games
use the term bots or ‘bots (with the single-quote character in front of the b), which is

7

Chapter 1 = A Target-Rich Environment

b ALl

Figure 1.4 Busted windows in the Great Hall.

a shortened form of the word robots. In some places, the term “NPC” is used, espe-
cially in the role-playing game world. Here, NPC means Non-Player Character—a
character within the story of the game, but not one controlled by any player (see
Figure 1.5).

Another term is monster. It seems odd to refer to a computer-controlled soldier char-
acter that is guarding some secret facility as a monster, but some people do. The
expression rises from the use of Al monsters in such old-time games as Doom and
Commander Keen. The big monster that you have to beat to make it to the next level
is the Boss. People still use those terms, even when they seem out of place.

Al Concepts

Simulating characters using computer-controlled Al usually involves simulating three
different behavioral modes: perception, action, and reaction.

It is necessary, to varying degrees, to inform the Al character about the world around
it. When we do this, we are helping the Al character to perceive its surroundings and
the events that occur. It's important to realize that your Al character can only per-

Making ‘Bots

Figure 1.5 'Bots contemplating their next moves.

ceive what you tell it, according to how you've programmed it. An Al character might
be programmed to detect players by “looking” around, but unless you’ve given it the
ability to perceive the fact that incoming rockets are hitting nearby, you can fire rock-
ets at the ‘bot all day long and it will have no clue that it is in danger.

Sometimes we want to rigidly control Al characters, especially when it comes to spec-
ifying where the Al characters can go. We can use a straightforward technique called
path-following. Torque gives us easy to use visual tools for specifying paths that our
Al can follow, as shown in Figure 1.6. In the figure, the path route is specified by the
path markers labeled a, b, ¢, d, and e (marker a’s label is obscured by another object).
The path is shown as a curvy loop of dots.

Action, to a ‘bot, would be the ability to perform specific tasks or a sequence of tasks.
A simple task would be to move to another location. Another task would be to fire at
an enemy. Our goal as game programmers is to teach, or program, our Al characters
to perform an appropriate number of simple tasks. We then want to be able to effi-
ciently tie the simple tasks into larger sequences of compound tasks, and tie the com-
pound tasks into even larger collections of compound tasks, until we get the behavior
we desire.

10

Chapter 1 = A Target-Rich Environment

Figure 1.6 An Al path in the World Editor.

Reaction is the process of perceiving states or events, and then acting appropriately
based on the perception. Using the example I cited earlier, if we can program our ‘bots
to sense or perceive that they are being shot at, we can then program them to react
by running for cover, shooting back, or crying like a little lost kitten.

Hands On

In this book we are going to write code to invest in our Al characters a realistic abil-
ity to find their way around the game world, perceive the game world in ways that
matter, act in ways that will hopefully keep players on their toes, and react appropri-
ately to threats and events.

Torque has built-in support for Al, and we will rely on that capability—but it won’t
be enough. So we will script the behaviors we want. If we do it well, we can witness
some really interesting emergent behavior—things that the ‘bots will do that we did-
n’t plan for or expect. Figure 1.7 shows two fantasy creatures, controlled by a fairly
simple Al script, fighting against each other.

Getting All Artsy-Fartsy

Figure 1.7 'Bots settling their differences.

Group Dynamics

Many game genres present the player with groups of computer-controlled players,
either playing along with the player or as adversaries or obstacles to the player’s
advancement. Sometimes groups of computer-controlled critters may be desired sim-
ply to provide an appropriate ambience. Picture a flock of seagulls wheeling around
a ship at sea.

Swarms, flocks, herds, and packs are a few of the varied group types that might be
modeled in a game environment. In Part II, we will explore these concepts and cre-
ate several scripts that illustrate how they work, as shown in Figure 1.8.

Getting All Artsy-Fartsy

We can’t really get by without addressing the more artistic side of game development.
There are several topics in the artwork and modeling chapters of 3D Game
Programming All in One that didn’t get complete coverage. Part III provides some
redress to that situation. Keep in mind that there will be no tutorial sections for art-
related tools. You will, however, find shareware and freeware versions of suitable tools

11

12

Chapter 1 = A Target-Rich Environment

Figure 1.8 Getting swarmed.

on the companion CD. So you will still have easy access to everything needed to do
the work. If you really need to learn how to use the tools, then get yourself a copy of
3D Game Programming All in One to accompany this book.

Details, Details

There is a slick mechanism available for the game developer that goes a long way in
reducing the load on a game client’s renderer, and it’s called level of detail (LOD)
switching.

It is similar to the concept of MIP mapping, an approach to texture mapping in which
an original high-resolution texture map is scaled and filtered into multiple resolu-
tions before it is applied to a surface. With LOD, we create multiple versions of a
model, each version with fewer polygons.

The basic idea is that as we move farther away from a model, two things happen: First,
the farther we are from something like a building, the more likely there will be more
buildings in our field of view, and this loads down our renderer and video hardware
with more and more polygons to draw; the second thing that happens is that we can
discern less and less detail on the building as it recedes in the distance. Figure 1.9

Getting All Artsy-Fartsy

|

Figure 1.9 Various levels of detail of a building.

shows a building model at full LOD, and then two lesser LOD versions. Note how the
least-detailed version is really just a box!

By using LOD switching, we capitalize on the second phenomenon to minimize or
even completely eliminate the undesirable effects of the first. As we move away from
the building, the game engine examines the apparent size of the building in our view.
When the apparent size hits a certain limit, the engine stops rendering the fully
detailed version of the model and starts rendering the less-detailed version. And then
it monitors the apparent size until it reaches the next limit, and so on. We can take
the detail levels all the way down until the apparent size is a single pixel in the dis-
tance if we want.

We can do the same things with all of our models—player characters, lampposts,
vehicles, trees, and whatnot.

Portals

When modeling interior structures we can use things called portals (see Figure 1.10)
to help the engine figure out what it has to draw and what it can ignore.

13

14

Chapter 1 = A Target-Rich Environment

-

Loy
)

SN

Figure 1.10 Portals in a castle interior.

This provides yet another way to speed up the rendering job and improve your game’s
frame rates. Portals also provide a mechanism to help control the lighting of your
interior scenes. Figure 1.10 shows how portals can be used to divide an interior into
multiple zones (also called cells). The room the player is viewing from is a zone; there
are two zones inside the stairwell to the right, and the entire area outside the win-
dows is a zone.

In Figure 1.11, the portals, which are CSG brushes, are depicted as thick black lines.
A brush in CSG terms is a convex 3D shape.

When the source models are compiled into their Torque-compatible format, the com-
piler figures out which cells are visible from the other cells and embeds this infor-
mation into the model’s description. The engine then uses that information when
deciding how to render the scene with that interior in it.

Let There Be Light!

Absolutely amazing things can be accomplished using judiciously applied lighting
effects. Torque has several lighting mechanisms available: fxSunlight, ambient scene
lighting, and interior spotlights and omni-lights.

Getting All Artsy-Fartsy

N //
portal

enlaly

N\

Figure 1.11 Portals in a building interior model.

There are also Torque-community created resources, such as the Lighting Code Pack
from Synapse Gaming. You can buy the lighting pack on the GarageGames website
(www.garagegames.com). Figure 1.12 is scene rendered using the lighting pack. All
of the objects in the scene are lit by the dynamic light emitted by the campfire in the
scene.

Using the technology in the lighting pack, one can “bake” lighting information into
a scene—things like shadows. This allows for very complex scene lighting with almost
no impact on rendering performance. It also makes it possible to generate dynamic
lighting for things that are always moving around, and still obtain the realism and
vibrancy needed to create an absolutely killer game world.

In Part III, we will also explore static and dynamic lights using Torque’s built-in light-
ing capabilities. Strobe lights, runway lights, and colored lights are just a few of the
effects we’ll implement.

15

16

Chapter 1 = A Target-Rich Environment

Figure 1.12 Dynamically lit nighttime scene.

Skin Shedding

To obtain variety in a game, it’s often a good idea to create a large and diverse col-
lection of models. Obviously, doing this is highly labor-intensive. There is a quicker
way to achieve and celebrate diversity than simply grunting through the creation of
dozens of models, and that'd be by skin swapping .

A simple way to achieve different skins for different models is to simply copy a model
a dozen times, and then edit each copy and apply a different skin to each model. While
this is certainly doable, there is still a lot of extra work involved in the copying and
editing, as well as the fact that each copy of the model (and skins) takes up more disk
space and memory when the game is running and the models are loaded.

A better way would be to just create a model and a set of skins once, right? You are
so right! In fact, Torque has a built-in mechanism to do just that. Using this mecha-
nism, we can assign any set of skins to a model at any time while the game is run-
ning. We can set it up so that players can choose characters based upon a preference

Moving Right Along

for a skin design. We can also set it up so that a player character’s skins can be changed
to reflect changes in the character—such as injuries, health, new clothing, and so on.

Dynamic skin swapping is ideal for supporting team-based game play. Simply create
one model or model set, and then swap in the skins that pertain to the appropriate
team.

Moving Right Along

In this chapter we took a quick survey of a host of features and concepts that repre-
sent a more advanced and complete understanding of 3D game development than
you saw in 3D Game Programming All in One. As you can see, there is a lot to cover,
so we want to get started right away.

In the next chapter, we’ll roll up our sleeves and muck around with TorqueScript to
achieve a better understanding of it and how to go about abusing it. Err, I mean using
it correctly. Honest.

17

This page intentionally left blank

CHAPTER 2 i |

WORKING WITH
TORQUESCRIPT

to programming in general. Much of TorqueScript’s basic capabilities were cov-
ered in 3D Game Programming All in One, in Chapters 4 to 7, and I won’t repeat
it all here.

In this chapter, we’ll go over some of the features of TorqueScript that don’t apply

I will, however, go into some of the more advanced and complex features in this chap-
ter, and in later hands-on activities in Parts I and III of this book.

To mangle the words of Ben Garney of GarageGames:

“TorqueScript occupies this sort of Zen space between procedural and
Object-Oriented programming (OOP), just like JavaScript and a few others.

3

The paradigm is ‘do what works within the spirit of the system.

This is a pretty useful direction from which to approach TorqueScript. You get most
of the important things that OOP brings to the table, like encapsulation, data hid-
ing, polymorphism, and inheritance, but perhaps not to the extent that you can with
a language like C++.

Torque Project Organization

When working with Torque, we must always keep in mind where we “are” in the code.
Figure 2.1 shows the folder layout of the scripts in a typical Torque project.

19

20

Chapter 2 = Working with TorqueScript

game
root server

common

debugger
editor
help
lighting

client

Rkl

control environment

water

11 P environment]
Lol
server [— scripts
—|: —| sound |

scripts
P —| terrains |

Figure 2.1 Typical TorqueScript project organization.

When we are developing our game, we will likely spend a lot of our time working
with the control code base. This is the code that defines your game—the game play
code, the artwork, and other resources. In this book’s Torque folder, called \A3D, there
are three control folders: demo, show, and rw.

Whenever we need to keep track of something, measure it, keep score, or make impor-
tant game play decisions, we need to be writing code for the server. Usually, we will
have a subfolder named server in our control folder, where all the server code will be.

When we want to define game-related GUI stuff, display artwork or play audio files,
or deal with user input, we need to be writing code for the client. It’s conventional to
have a subfolder named client where all of the client code will reside.

Then there is that vast body of useful and necessary utility code, called the common
code base, that is found in the folder named common. This folder has most of the
code needed for the everyday, non-game-specific things that you need to make your

Installing Torque

project work, like the control definitions, server and client management and syn-
chronization code, in-game editors, font caching, and other little odds and ends. For
the most part, you won’t bother with the code in here, although you might modify
some of the graphic images and textures found there to match your overall game
appearance.

Installing Torque

The companion CD contains all the materials you will need to follow along with the
chapters: the Torque executable, the Torque Game Engine Demo (“Torque demo”),
any required art and script resources, plus useful tools. Everything you need will be
in the folder called \A3D.

Some of the tools, which will be located in the \A3D\TOOLS folder, may require
installation before you use them. Not all of the supplied tools are required in order
to follow along in the book. Some are provided as a courtesy in case the reader does
not have another suitable tool for a particular task.

If the text absolutely requires you to use a specific tool to complete a procedure out-
lined in the book, the text will tell you where to find and install it or otherwise use it
for that task.

To install Torque for use with the book, insert the companion CD into your CD drive,
and follow the on-screen instructions. When you have finished the layout of the hard
drive, it will match the layout of the companion CD, so anywhere you see the folder
\A3D or any of its subfolders described in the text, you will be able to find it on your
hard drive or on the companion CD. The \EXTRAS folder on the CD is not needed
in order to use the book, however.

For Macintosh and Linux Users

For readers using an operating system other than one of the Windows variants, the compan-
ion CD's installation procedure will likely not work for you. The Torque demo executable in
\A3D will also not work for you. However, the scripts and artwork from the book's examples
will work on Macintosh and Linux systems providing you have the correct demo installation
from the \EXTRAS folder on the companion CD installed for your operating system.

When using the installers described below, please ensure that your destination direc-
tory or folder during the installation is /A3D and not the default installer path. This
is to ensure that your installation paths match the paths described in the book.

To do this, first look in the /EXTRAS folder on the companion CD and locate and install the
demo for your operating system:

For Macintosh

Use /EXTRAS/Macintosh/TorqueGameEngineDemo_1_3.dmg,

21

22

Chapter 2 = Working with TorqueScript

For Linux

Use /EXTRAS/Linux/TorqueGameEngineDemo-1.3.bin.

After installing the appropriate Torque demo variant on your system, you must then copy the
contents of the companion CD's /A3D folder into the new directory that the installer created,
/A3D on whatever volume you've just installed the Torque demo to on your system.

After that you can then delete the files demo.exe, getdxver.exe, glu2d3d.dll, OpenAL32.dll,
and opengl2d3d.dll from your new /A3D folder if you like—they are Windows files that you
won't be able to use anyway.

One more thing: In the book, you will sometimes see references to folders that uti-
lize full path names—Iike \A3D\demo\client\init.cs, for example—and sometimes
see partial paths—like RESOURCES\ch2. The drive letter will never be included. This
means that the path to the folder will be appropriate no matter which hard drive or
volume you install to. With the partial paths, it will be obvious where the folders are.
RESOURCES is always a subfolder of \A3D, for instance, as are the TOOLS, demo,
common, rw, editor, and show folders.

Note

Throughout the book, you will see references to the “fps demo.” This is the Torque Game
Engine Demo program, set to run the fps mission. Run the fps demo by double-clicking on
demo.exe in the A3D folder. After the splash screen disappears, in the main menu, click on the
button near the center that says “Example: FPS Multiplayer.” On the next screen, make sure
the Create Server box is checked, then click on the right-facing arrow button in the bottom
left part of the screen.

Quickie TorqueScript Briefing

For those of you who are new to Torque, here’s the cook’s tour of TorqueScript that
will get you up and running. There are obviously more details behind these few points
that will surface and be explained with the fullness of time.

Typelessness With Torque, variable types are converted as necessary and
can usually be used interchangeably. Variables are either
global or local in scope. Global variables are prefixed with
the $ character, and local scope variables are prefixed with
the % character. You can only have locally scoped variables
within functions or methods, but global variables are acces-
sible everywhere.

Caselessness

Statement

Termination

Operators

Control
Structures

Functions

Objects

Packages

Quickie TorqueScript Briefing 23

TorqueScript ignores case when interpreting variable and
function names. Keywords are case-sensitive. See Appendix
A, Table A.3 for a list of TorqueScript keywords, and note
that they are all lowercase.

Code statements are terminated with a semicolon (;) as in
many modern programming languages like C/C++ and Java.
If you don’t include the semicolon at the end of a Torque-
Script statement, you'll probably get an error in the console.

See Appendix A, Table A.4 for a complete list of Torque-
Script’s operators. You will find most of them to be basic
operators common to most programming languages, along
with a few more advanced operators. Operator precedence is
shown in Appendix A, Table A.5.

Like C/C++ and Java, TorqueScript provides the standard
programming constructs: if-then-else, for, while, and switch.

TorqueScript provides the ability to create functions with
the optional ability to return values. Arguments can be
passed by value and by reference. When you define a func-
tion, the statement must begin with the function keyword.

Torque uses a wide assortment of objects and object-types
and makes them available for use in TorqueScript, and pro-
vides for the creation of ad hoc objects (ScriptObjects). See
Appendix A, Tables A.8, A.9, and A.10 for lists of script-
accessible objects and Table A.2 for their methods.

Packages are the mechanism that TorqueScript uses to pro-
vide dynamic-function polymorphism. A function defined
in a package will override the prior definition of a same-
named function when the package is activated. Only func-
tions can be packaged, and a function can exist in more than
one package, with a different definition in each. Activating
and deactivating packages determines which version will be
used.

24

Chapter 2 = Working with TorqueScript

Problem-Solving Techniques

When working with TorqueScript, as with any programming language, you will even-
tually run into some intractable problem that you just can’t beat into submission.
Something isn’t working right, and nothing you do seems to change it.

There are a few proven approaches that are useful when you need help beating a prob-
lem into the ground and pounding it into tiny little pieces.

Logging
The simplest, and often most effective, debugging tool is the console logging capa-
bility. Logging is available in two forms: logging to console and logging to file.

Logging to console is always enabled by the Torque engine, and log messages are vis-
ible when using Torque by opening the console window (by pressing the tilde (~)
key).

Logging to file can be enabled in one of several ways. The most common method is
to include the program statement:

setLogMode(n);

where 7 is one of the values in Table 2.1, into your script somewhere where it will be
executed before the program code that you want to debug. In fact, the Torque demo
does this for you already. If you do not otherwise specify a log mode, the Torque demo
enables logging with mode 6.

You can also set the log mode through the use of a command line switch. If you launch
the Torque demo from a Windows command shell or batch file, then add the -10g n
to your command line, where 7 is one of the mode values from Table 2.1.

Finally, you can turn logging on or off, or change the mode, whenever you like while
running the demo by simply opening the console window with the tilde (~) key, and
typing the command:

setLogMode(n);

where again, 1 is one of the modes in Table 2.1. Note that’s a semicolon at the end of
the command; make sure you press the Enter key after typing in the full command
statement.

Logging to the console.log file is enabled by default in the Torque demo, in mode 6.

Problem-Solving Techniques

Table 2.1 setLogMode settings
Setting Meaning

0 Disables logging to console.log file.

1 Enables logging to console.log in append mode. All entries are appended to
existing log file. This means that to remove the logging info from earlier sessions,
you need to delete console.log manually via the operating system (using the
command shell or Explorer). The log output buffer is flushed and the console.log
file is closed after every logging write operation to the file. If the first time that
Torque encounters setLogMode(1) in script, it (setLogmode) is setting the log mode
to 1, then logging to the console.log file will begin at that first encounter, and the
output begins at the point in the script where that first encounter takes place.

2 Enables logging to console.log in overwrite mode. Every time the Torque demo is
launched, the old contents of console.log are overwritten with new information.
The log file remains open while the Torque demo is running. This yields higher
performance, since there is only one log file open operation and one log file close
operation per run session of the Torque demo. If the first time that Torque
encounters setlogMode(1) in script, it (setLogmode) is setting the log mode to 2,
then logging to the console.log file will begin at that first encounter, and the
output begins at the point in the script where that first encounter takes place.

3 Not used.

Not used.

5 Same as mode 1, except all of the contents of the console window created prior to
the point where the setlLogMode(5); statement is encountered are flushed out to
the log file when this first setLogMode(5); statement is encountered in
TorqueScript.

6 Same as mode 2, except all of the contents of the console window created prior to
the point where the setlLogMode(6); statement is encountered are flushed out to
the log file when this first setLogMode(6); statement is encountered in
TorqueScript.

Checking for Compiler Errors

The first place to start is ensuring that your modifications are indeed making it into
the compile byte-code (also called p-code) that Torque uses when it runs script code.
The usual process is that Torque compiles your script into a byte-code module, then
loads that module and begins execution at the top of that module. If there was already
a byte-code version (.dso) of your script (.cs) module, then Torque will replace the
old one with the new version it has just created.

25

26

Chapter 2 = Working with TorqueScript

However, if Torque discovers an error in your code, it will abort the compilation
process, dump an error message into the console (and into the console.log file if log-
ging is enabled), and then move on to the next task. The noteworthy thing is that
Torque will not delete the old version of the byte-code.

You will then end up in the state where your source code module is different from
the byte-code module. You see one thing with your eyes, and Torque sees something
different.

The quickest way to detect if a programming error has caused Torque to not compile
your changed source code module is to open the console and scroll back up to the
beginning of the session, looking for error messages. Serious, fatal messages are
printed in the console in red, whereas mere warnings are printed in gray. Look for
the red error messages, and if there aren’t any, peruse the warning messages to see if
anything looks pertinent.

Cleaning Out the Byte-Code Modules

Finally, if you see nothing in the console or the console.log file, then locate the byte-
code module in question (the .dso version) and delete it. In fact, you can safely delete
all .dso modules in your script folder tree, as long as you don’t touch the source files.
Torque will simply rebuild all of the byte-code files. If the problem was in your source
code, you should now get new behavior, possibly a serious and obvious error mes-
sage or at least some kind of useful error message in the console window.

Using Debug Output Statements

The three functions that send messages out to the console can be used to great effect
when debugging:

echo(text);
warn(text);
error(text);

echo prints fext to the console with the standard black font; warn does the same thing,
but the output is the standard font in the color gray; likewise with error, except the
output is in the color red. With all three functions, text can be formatted according
to the string rules.

With judicious application of an appropriate output message, we can track what is
happening in our scripts. In general, you want to make your best guess about where

Problem-Solving Techniques

the problem is taking place, and put a debug output message there. You will want to
either put in a recognizable marker that can be found when scrolling through a con-
sole dump or output some important information related to the code’s activity—per-
haps the output of a few variables.

In order to have the console output dumped into the console.log file, make sure that
you've placed a call to setLogMode somewhere in your code where it will be executed
before the program reaches the problem areas. A simpler way is to use the -1og com-
mand line switch, followed by a space, and then the number 0,1, or 2. If you use the
0, you will disable logging. Using the 1 enables logging such that each new session is
added to the end of the log file. Using 2 enables logging such that the previous log
file is overwritten.

To put in a progress marker, you can do something like this:
error('**********************ﬁ**********************'J:
This will create a line like this in the console.log file:

dhkkkkkdhkhkkhhkhkkkdhhbhhhkbhdhhhhdhhhdhdhhbhhdhdh

In the console itself, the line of asterisks will be red in color and easier to spot. You
could use warn to get gray output and echo to get black output in the console.

Often, when using debug output like this, if the game hangs or locks up, the last line
of output doesn’t actually make it to the log file, even though the line has been exe-
cuted. The way to deal with this is to simply put two identical error lines, one right
after the other. If the game hangs, only the first line will be printed, but now you will
have narrowed down your bug search. Next, move your two marker lines farther down
in the code until they stop appearing in the console log. When that happens, you'll
have bracketed the location of the problem.

If you need to examine the contents of important variables, let’s say, X, Y, and the
player’s name, you might use a statement like:

echo("player's name:" @ playerName @ " X="@ ¥X @ " Y="@ %Y);

You would end up with output in your console log looking like this:

player's name:bozotheclown X=123 Y=456

27

28

Chapter 2 = Working with TorqueScript

Using trace

Torque has a very handy function called trace that can be used to figure out exactly
what code is being executed as a script is run. This is especially helpful when you are
puzzling out some logic problem. You need to stick in the trace statement well before
the code that you are interested in. Enable tracing by using trace(true). Stick in a call
to trace(off) to disable tracing when the code is past the area of interest.

You can also enable tracing simply by opening the console and typing

trace(true);
Take a look at this bit of console output:

--------- Initializing MOD: Common ---------
Loading compiled script common/client/canvas.cs.
Loading compiled script common/client/audio.cs.

--------- Initializing MOD: Torque demo ---------

Loading compiled script demo/client/init.cs.

Loading compiled script demo/server/init.cs.

Loading compiled script demo/data/init.cs.

Loading compiled script demo/data/terrains/highplains/propertyMap.cs.

When we turn on trace, the output looks like this:

--------- Parsing Arguments ---------
Entering [demolparseArgs()

Entering [common]parseArgs()

Leaving [common]lparseArgs() - return
Leaving [demolparseArgs() - return
Entering [demolonStart()

Entering [common]onStart()

--------- Initializing MOD: Common ---------
Entering initCommon()
Loading compiled script common/client/canvas.cs.
Loading compiled script common/client/audio.cs.
Leaving initCommon() - return
Leaving [commonlonStart() - return

Problem-Solving Techniques

--------- Initializing MOD: Torque demo ---------
Loading compiled script demo/client/init.cs.
Loading compiled script demo/server/init.cs.
Loading compiled script demo/data/init.cs.
Loading compiled script demo/data/terrains/highplains/propertyMap.cs.
Entering initServer()

Using dump

We can look at the current values of properties for any object in the game if we have
the object’s handle, or at least a variable that’s in scope that contains the handle. We
do this by opening the console window with the tilde (~) key and calling that object
with its inherited dump method, like this:

¥player.dump();

In this case, assuming %player holds a valid P1ayer object handle, the call to dump will
yield the following reams of information:

Member Fields:
dataBlock = "LightMaleHumanArmor"
position = "202.197 268.211 257.386"
rotation = "0 0 1 111.172"
scale="111"

Tagged Fields:
client = "1600"
invCrossbowAmmo = "10"
mountVehicle = "1"

Methods:
applyDamage() -
applyImpulse() -
applyRepair() -
canCloak() -
checkDismountPoint() -
clearControlObject() -
clearDamageDt() -
clearInventory() -
clearScopeToClient() -
Damage() -
decInventory() -
delete() -

29

30 Chapter 2 = Working with TorqueScript

dump() -
getAIRepairPoint() -
getCameraFov() -
getClassName() -
getControllingClient() -
getControllingObject() -
getControlObject() -
getDamageFlash() -
getDamagelevel() -
getDamagelocation() -
getDamagePercent() -
getDamageState() -
getDataBlock() -
getEnergylevel() -
getEnergyPercent() -
getEyePoint() -
getEyeTransform() -
getEyeVector() -
getForwardVector() -
getGhostID() -
getGroup() -

getld() -

getImageAmmo() -
getImagelLoaded() -
getImageSkinTag() -
getImageState() -
getImageTrigger() -
getInventory() -
getMountedImage() -
getMountedObject() -
getMountedObjectCount() -
getMountedObjectNode() -
getMountNodeObject() -
getMountSlot() -
getMuzzlePoint() -
getMuzzleVector() -
getName() -
getObjectBox() -
getObjectMount() -
getPendingImage() -

getPosition() -
getRechargeRate() -
getRepairRate() -
getScale() -
getShapeName() -
getSkinName() -
getSlotTransform() -
getState() -
getTransform() -
getType() -
getVelocity() -
getWhiteQut() -
getWorldBox() -
getWorldBoxCenter() -
incInventory() -
isCloaked() -
isDestroyed() -
isDisabled() -
isEnabled() -
isHidden() -
isImageFiring() -
isImageMounted() -
isMounted() -
isPilot() -

kill() -
maxInventory() -
mountImage() -
mountObject() -
mountVehicles() -
onlnventory() -
pauseThread() -
pickup() -
playAudio() -
playCelAnimation() -

playDeathAnimation() -

playDeathCry() -
playPain() -
playThread() -
save() -
schedule() -

Problem-Solving Techniques

31

32 Chapter 2 = Working with TorqueScript

scopeToClient() -
setActionThread() -
setArmThread() -
setCameraFov() -
setCloaked() -
setControlObject() -
setDamageDt() -
setDamageFlash() -
setDamagelevel() -
setDamageState() -
setDamageVector() -
setDataBlock() -
setEnergylevel() -
setHidden() -
setImageAmmo() -
setImageLoaded() -
setImageTrigger() -
setInventory() -
setInvincibleMode() -
setName() -
setRechargeRate() -
setRepairRate() -
setScale() -
setScopeAlways() -
setShapeName() -
setSkinName() -
setThreadDir() -
setTransform() -
setVelocity() -
setWhiteQut() -
startFade() -
stopAudio() -
stopThread() -
throw() -
throwObject() -
unmount() -
unmountImage() -
unmountObject() -
use() -

Problem-Solving Techniques 33

Whew! That’s a pile of stuff. Notice that there are almost 4 pages of methods for the
Player class. Many of those are Player class methods, some of them are inherited
ShapeBase class methods, and the rest are GameBase class methods. Way back at the
front are a bunch of properties (“member fields” and “tagged fields”).

There are tons of methods distributed among all the different classes. If you need to
know which methods are available for any given class, just use dump.

You can use dump in several ways. As I showed you in the example, you can dump a vari-
able that you know contains a handle to the object. If you happen to actually know
the object handle value you can use that instead, like this:

1607 .dump();

You can also use a datablock name to get a dump, like this:

LightMaleHumanArmor.dump();

Using the In-Game Object Browser

Easier to use than the dump command is the in-game object browser called tree. Again,
this is a console command. Open the console window with the tilde (~) key, and then
type tree(); in the console, and two windows will appear, as shown in Figure 2.2.

-1: ReotGroup - SimGoup
=|07? ActiveActionMapSat-

oliag
TallGram - teFoliage
- TSStatic
« T55tatic
- T§5tatic
- TSStatic
- SpamnSpheie
- SpawnSohere
- - SpawnSphere
- SpawnSphere
- SpawnSphate
(L) 1558: - Interiednstance |
1 - Interiotinstance B
= Intaricrinstance
il

Figure 2.2 In-game object browser.

34

Chapter 2 = Working with TorqueScript

Using the browser window on the right, you can rummage through and find any
object in the game. When you click on an object to select it, its contents appear in the
editor window on the left. You can maneuver the windows around the screen to your
best advantage.

Once you've found the object you are interested in, you can change its values in the
editor window in real time as the game is running. Hit the Apply button to commit
the changes, then close the windows so that you can go look to see how things change.

The TorqueScript Source Debugger

When all else fails, it’s time to call in the big guns. Torque has a built-in run-time
source code debugging capability that uses telnet (an internet communications pro-
tocol) to allow you to log into a running server using another instance of Torque as
a client. The client and the server can be on the same computer or on different com-
puters halfway across the world from each other.

Take heed! This is not for the faint of heart. The TorqueScript Source Debugger lets
you step through program code and execute program statements and function one
line at a time. It will also allow you to view and edit the contents of variables at run
time, and it gives you full control over the remote game server through a built-in con-
sole. Note that the code you want to debug will need to be running on the server,
whether that server is remote on another computer or running as another instance
of Torque (in dedicated mode) on your development computer (along side the client
and all your other development tools).

A Tour of the Debugger

The client-side of the debugger presents a graphical interface (See Figure 2.3) with
various panes to provide different kinds of information and control, as described in
Table 2.2. Some of the panes contain additional internal controls and widgets that
are also described in Table 2.2.

The Source Code Viewer pane contains a number of markers that tell you things about
the state of the program. Figure 2.4 shows the Source Code Viewer pane, with the
markers pointed out.

Problem-Solving Techniques 35

Debug Contrels 1

i Torque Game Engine
I Copryright (C) GarageGames com_inc

e SOCE Code Viewer
[} — F__' [_ r-"— —t

messageAl MagAanrForce’, e 2The Admn has kicked %1 ', Schert name))]
’ meiTage phamnF orce e Adem b ed Sechert nae r e 1y

If (Mlchent i AX ontrcled! 1)
Bardit dd, Nchert ' .
Schert delete(=vou have been licked from I1vs server-), 51‘3&@0)‘3 t
= Watch —
function ban(Schert) LLS' '

{
message Al Meghdminf orce’, "c2The Admn has banned %1 ", Schent name

=] Sendng heartbest to master server [P:216.116.32.49.28002]

| Received rifo reguest rom & master server [P 216116 32 45 2|
C-’OZJSQ[G | mecerved into request trom a master server [P 216116 32 43 2|
Ofﬂ?ﬂt Sendng heartbent to master server [IP-216.116 32 4% 28002]

¥ | Received nfo request from a master server [P-216.116.32 48 2|
Viz‘za&'{e | Received info request from o master server [P 216,116 32 452
IV:?:C& Sendng hearibest 10 master server (IP-216.1186 32 49.28007]
T
A Recerved nlo request fiom a master serves [P 216 116 32 49 2|
LLSL‘ Cbmo[g Soecho{00C)

Xx

.&p&f\ ‘::«'Te;!mmum-m werver [P 216116 32 45.2|

Figure 2.3 The TorqueScript run-time debugger.

Table 2.2 TorqueScript Debugger Panes

Pane Description
Debug Controls Six buttons that control the program execution while the debugger is
active:

Connect Connects the client interface to the debugger server.

Step In Causes the debugger to enter the next script
function encountered, displaying its code.

Step Over Causes the program execution to not enter the next
function, but to only evaluate any result from its
execution.

Step Out Causes program execution to run to the end of a

function, and then exit to the calling code, returning
a value if required. Program execution halts when
the program counter is situated at the calling code.

Run Causes normal program execution to resume.
Program execution will not halt until another
breakpoint is encountered.

Find Used to locate a string of text within an open
source module.

36 Chapter 2 = Working with TorqueScript

Table 2.2 TorqueScript Debugger Panes (continued)

Pane

Description

Source Code
Viewer

Variable Watch List

Call Stack

Debugger Status

Breakpoint Watch
List

Displays the textual source code of control script (.cs) or interface script
(.gui) modules. Also contains several informational widgets:

Program counter Indicates which program statement will be executed
next.

Statement marker Indicates a valid, executable program statement.
Breakpoint marker Indicates a statement that has a breakpoint
assigned to it.

Source File selector Provides a pop-up list of source files from which to
select the file containing the source code to be

examined.
Five buttons managing and manipulating script variables at run time:
Add Opens a dialog that accepts the name of a variable
and adds that variable to this watch list.
Edit Opens a dialog that allows you to change the value
of the selected variable at run time.
Delete Removes the selected variable from this watch list.
Clear Sets the value of the selected variable to null.
Refresh Updates the values of all variables in this watch list.

This pane displays a list of all functions entered to get to the current
point in the program code. The function names are listed in FILO order—
the top function in the list is the last function called and will be the
function that the program counter is currently in, as seen in the Source
Code Viewer pane. The stack refers only to functions entered since the
debug session began.

Indicates the state of the debugger on the server. Possible values are:

NOT CONNECTED Debugger client is not connected to a server.

CONNECTED Debugger client is connected to a server, but has
not yet stopped any program execution.

BREAK Program counter has encountered a breakpoint and
halted program execution at the breakpoint.

RUNNING Program code is currently executing and will

continue until a breakpoint is encountered.
Breakpoints that have been set are listed here. There are three controls:

Condition Opens a dialog in which you can set the conditions
under which the selected breakpoint is active. The
condition takes the form of a regular valid
TorqueScript conditional statement (ie. %x > 10).

Problem-Solving Techniques 37

Pane Description
Delete Deletes the selected breakpoint. It has a bug,
unfortunately. It will only work to delete a
breakpoint if the breakpoint has a condition set.
Otherwise the Delete button has no effect.
Clear Removes all breakpoints from the list.
Console Output Works the same as the output window of the regular console, except that

it is obviously smaller. Colored output messages work normally.

Console Input
recall.

Works the same as the input field of the regular console, including history

Figure 2.4 shows the Source Code Viewer pane. You can't edit the source code here;
instead, it is used to show you the progress of the program counter (represented by
the symbol “=>" on the left side of a statement line). The program counter always

points to the next statement to be executed.

Openrie: | ESRRRRRNESERN <—— Scozce File .m-/m’&*ﬂ
A‘(yrm coanler
function

Ali%msgType, %msgString, %al, %a2, %a3, %ad, %a5, %06, %a7

(
] %ecount = ChentGroup getCount(), |
s for{%cl = O, %ci < %count, %cle+) .

Bmaﬁxh ¢t marker
%clent = ChendGroup get {%ect];
messagelient(%chent, emegType, %msgSiring, %eal, %al, %a3, %ad, %as, %bi_

|

)
Sta lement markers
function messageAlExcept%chent, %team, %Nmsglype, %emsgString, %al, %al, %ad]
(1
lican exchude a client, ateam or both. A -1 value in elther field will ignore that exclusi
ARE A,-1, . BlahT), will g everyone (since there shy

P

Secount = ChentGroup getCourt();
for(%cl= 0, %cl < %count. %cle+)

R

Figure 2.4 The Source Code Viewer pane.

Valid and executable program statements are indicated by the statement marker (“-
”), while statements that have a breakpoint set at them are indicated by the break-

point marker (“#7).

To insert a breakpoint, click once on a statement marker, and the marker will be
changed to the breakpoint marker. The breakpoint will appear over on the right in
the Breakpoint Watch List pane (See Figure 2.5). You can clear that breakpoint if
you have to by clicking on it again, or by pressing the Delete button for a selected

38 Chapter 2 = Working with TorqueScript

nCwm(CJO.lglﬂ“lu- e

ézwea@wmc‘ set heze...
— ...and lsted here

' messageAl MegAdmwForce’, “e2The Admn has bicked %1 ', Rchert name)

II:M-I-AEMH

Techent deseto(™Vou have been Kicked from fhvs server’),

\éz-e ornls a’e[etea’ hera
wre ..oz here

muwan’ 2The Admin has banned %1 ", Nchent name)

Sending hearibeat to master server [IP216.116 32.4%:28007]

| Received info request from & master server [P 216 118 30 45 2|
| Received info request from o master server [P 216 116 32 45 2|
Sending hearbest to master server [IP.216.116 32 40 26002
Recesved info request from a master server [P 216,116 32 48 2|
Received info request from o master server [P 216,116 30 492
| Sending heartbeat to master server (P 21611632 49 28000]
Recerved info request from & master server [P 216116 32 49 2|
Seocho{XXX")

L]

Recetved info request from o master server [P 216 116 32452

Figure 2.5 Setting breakpoints.

breakpoint in the Breakpoint Watch List pane (although due to a bug, the Delete but-
ton only works on breakpoints that have a condition set).

The Breakpoint Watch List pane (Figure 2.6) shows you all of the breakpoints you
currently have set. The Condition button is used to turn a regular breakpoint into a
conditional breakpoint. Any standard TorqueScript conditional statement can be used
here, including comparisons and boolean statements, as long as:

= the entire expression can correctly evaluate to true or false, and
= any variables used in the expression are in scope at the time when the
watched breakpoint statement has been reached.

For example:

%1 =16
(%x <= 800) && (%y <= 600)
Sky.materiallist $= "~/data/skies/sky_storm.dml"

are all valid breakpoint condition expressions (assuming that their variables are in
scope). The expressions are not valid program statements as written, and shouldn’t
be anyway.

Problem-Solving Techniques 39

10 commoniserver kickbn cs 82. a mt
19 commoniserver kickbibn cs entre .‘f

L Searce Medale list
Breakpeint

line numéber

Figure 2.6 The Breakpoint Watch List pane.

Note

If ever you were wondering about the usefulness or ability of TorqueScript as a programming
language, get a load of this: The TorqueScript Source Debugger is not only for debugging
TorqueScript source code—it is also written entirely with the TorqueScript programming lan-
guage! If you want to take a gander at the code, poke your nose into the file \common\debug-
ger\debugger.cs.

The Variable Watch List is where you can enter variables whose contents you want to
examine (see Figure 2.7). The variables can be global or local variables. The only
caveats are that the variable must be a valid variable that is in scope at the time you
examine it. Typically you would examine the variables when the program counter has
encountered a breakpoint and halted program execution.

$Pref Server:Name Torque Demo Server

sickent Cenlrels
f

L Value column

Variable cclumn

Figure 2.7 The Variable Watch List pane.

You can also change the values of variables by selecting the variable and pressing the
Edit button. This is an extremely valuable capability that allows you to quickly try
different program execution paths without having to rewrite and reload any source
modules.

40

Chapter 2 = Working with TorqueScript

Enabling the Debugger

To use the TorqueScript Source Debugger, you will need to run two instances of
Torque. You will need to launch a server instance of Torque and a client instance.
There are a few different ways to go about this.

The Server Debug Host

If you only have one computer, then you really have only one option, and that is to
launch a dedicated server version of Torque. This will be your server debugger host.

Step One

To create a dedicated server version of Torque, run a command shell, change to the
A3D directory, and launch the dedicated server using this command:

demo.exe -dedicated -mission demo/data/missions/fps.mis
Of course you can use a different mission file than fps.mis if you like.

Now, it’s important to realize that all of the scripts that you will be able to access with
the debugger must be loaded on the server. In normal situations, this means that you
can only use the debugger on server-side code. However, if you really need to get at
some client-side module, then you need to load the module on the server with a call
to exec. Fortunately, you can do this manually via the console interface whenever you
need to. Not all client-side scripts are necessarily going to work correctly in this way,
but most will.

The other server options you have are to run the server on a different computer on
your LAN (as long as it has a TCP/IP address), or run the server anywhere else in the
world providing there is Internet access.

Once the server is running, you will end up with a standard Windows console win-
dow (not the nifty Torque console). This console is less capable than the Torque con-
sole, but it will do for our needs.

Step Two

Now you need to turn on the debugger monitor on the server. Do this by entering
the following command in the console:

dbgSetParameters(5432, "sup");

The first parameter, 5432, is the TCP/IP port that the debugger will monitor looking
for debugger clients that want to connect. The second parameter is the security pass-
word. I suggest that you don’t use the settings I show you here, since everyone who

Problem-Solving Techniques

uses this book will have access to the same information. Pick your own port number
and password and record them somewhere; you will need to use them again on the
client.

If everything has gone smoothly, you will see this message in the server console:

Binding server port to default IP

Next up, the client.

The Client Debug Interface

Once the server is set up and running, you then must run the client. You merely need
to run the Torque demo as usual and then load the debugger script. The debugger
script is written in such a way that the debugger client interface automatically will be
invoked after the script loads.

Caution

If you are planning to run both the server and the client on the same computer (and most
people will), then you will most likely want to run your dedicated server in the same folder as
the client. This is perfectly reasonable and will work just fine. It's the way | do it. There is one
small issue though that might matter to you: Only one of the two instances will be able to
access the console.log file. The easiest way around this is simple: Make a copy of your \A3D
folder, perhaps called \A3DServer (or whatever you choose). You can then run the dedicated
server from that other folder and the client from the original folder. That way both instances
will have unfettered access to the console.log file. However, if you are using the debugger,
you may have little need to use the console log file anyway.

Step Three
Launch the normal Torque demo.

Once the client is running (you only need to go as far as the main menu), open the
console with the tilde (“~”) key. You can then load the debugger client by typing in
this command:

exec("common/debugger/debugger.cs");

This will bring up the debugger GUI in the back, behind the console window, so you
need to close the console window by pressing the tilde key again. There you go! One
source code debugger, made to order.

Well, it’s cool and all, but not of much use yet. The next step is to connect to the server.

41

42

Chapter 2 = Working with TorqueScript

Step Four

Click on the Connect button, and you will get the dialog shown in Figure 2.8.

Figure 2.8 The Connect to Server dialog.

Now’s the time to find where you recorded the port and password information you
used when running the dedicated Torque debugger server back in Step Two. Enter
the values for the port and password.

For the IP Address field, use 127.0.0.1, which is the reserved IP address that repre-
sents the localhost (the computer you are currently using). If the debugger server is
on another computer on your LAN or another computer out there in big scary
Internet world, you will need to know the IP address of that other computer and enter
that address in the IP Address field instead.

Click on the Open button, and in short order, Lord willin’ and the creek don’t rise,
the Debugger Status field will change from NOT CONNECTED to CONNECTED. We're in!

Using the Debugger

To use the debugger, you will need to open a code module of interest, presumably
one that you are having trouble with. Do this by clicking on the Source File selector
in the Source Code Viewer pane at upper left. Choose the file to be examined from
the pop-up list that appears. For the sake of argument (and who doesn’t love a good
one, eh?), let's open up the player.cs control script module. Scroll through the Source
File selector’s pop-up list until you see the entry demo/server/scripts/player.cs, and
select that one. It’s pretty close to the top of the list.

Once the script appears in the Source Code Viewer pane, scroll through it until you
find the method Armor: :onEnterLiquid. To insert a breakpoint, click on the statement
marker at the line where you want the program execution to stop. Note that you can’t
insert a breakpoint on a comment-only line. For our purposes now, set the break-
point on the statement:

case 0: //Water

Problem-Solving Techniques

If the breakpoint is in the execution path, then the program counter will stop there
in short order, and the entire server will be sitting there, twiddling its thumbs wait-
ing for you to make up your mind what you want to do next, and to bloody well get
on with it already. However, notice that nothing like that happens right now, and
that’s solely because the breakpoint’s code is not in the execution path. So we have to
do something about that. Since I told you to put the break in onEnterLiquid, I guess
we need to find some liquid to enter. Like maybe a risin’ creek... stand easy on that
little tidbit, we’ll get back to it in a minute.

But first, I want to show you something really nifty. You will recall that we connected
to the debugger server from our client’s main menu. Well, we don’t have any press-
ing need to be in the main menu. Why don’t we go and connect to the game server
that is being hosted by the debugger server? Yup, we can do that!

You will probably remember that the debugger interface has its own console input
and output windows, right? Well that console executes on the debugger server, and
not locally on the client. We can still use the regular console on the client by pressing
the tilde key. So open the normal console with the tilde key, and then type in this
command:

Canvas.popDialog(DebuggerGui);

Poof! We're back to the main menu! Of course, that pesky console window is in the
way, so press the tilde key to get rid of it. Now, click on the FPS demo button there
in the menu screen. In the next screen, do not click in the Create Server checkbox.
Just click on the right arrow. You will come to a server selection screen; press the
Query LAN button. You will see your server sitting there, happily serving away. Click
on it, and then click the right arrow button. You will soon join the mission being run
on the server.

After your guy spawns in, run over towards the water where the pier is. It’s right in
front of the big gray blocky building (the Great Hall). Run right into the water, and
keep going. At some point when you are fully submerged, you will notice everything
stop! What happened?

Well, open your console window, and type in the following command:

Canvas.pushDialog(DebuggerGui);

Poof again! Back in the debugger. Throw away the console, and take a look at the
statement where you placed the breakpoint earlier. Notice that there is now a “=>"
symbol in front of it. That’s the program counter, and program execution stopped

43

Chapter 2 = Working with TorqueScript

when it got here, because we found some liquid to enter, and we entered it. And then
everything came to a screeching halt.

Click on the Run button. The program counter will disappear as everything starts
chugging away again. Open the console, and flip back to the game view by hitting the
up arrow key and recalling the popDialog command you used earlier, and press the
Enter key.

Poofaroonie! Back to the game, and notice that we aren’t stuck anymore. Move your
guy back up out of the water; we're going to do this again, but slightly differently.
Take note of your health bar at the left. It should be full up to the top, or pretty darn
close.

Let’s flip back to the debugger, using the method (pushDialog) I just showed you, and
this time move our attention to the Variable Watch List pane. Click on the Add but-
ton, and when the Add a Watch Expression dialog appears, type %type. A new entry
in the watch list will appear, with %type on the left hand side.

Now flip back to the game again, using your newfound powers (popDialog). Run into
the water, without a care in the world, not even concerned about sharks. When the
game freezes up (sharks?!), switch back to the debugger, and look at the %type entry
in the watch list. It will have a value of 1. If you look in the code, you will see that 1
is the value for ocean water, and you will also see that nothing happens when you
enter ocean water. You will also recall that after we went in the first time, and then
checked our health, it was full, or almost so.

Let’s do this: select the %type entry in the watch list, and then press the Edit button.
Change the value to 4. Notice from the code that 4 is lava. Press the Edit button in
the dialog to submit the change.

Now press the Run button again up in the Source Code Viewer pane. The program
counter will disappear, racing off into the innards of your computer. Time to switch
back to the game again.

Back in the game, you should be able to move once more and look at that! Your health
is way down, almost gone! That’s lava for you. Unhealthy.

There’s one more handy feature to try out, and that’s the conditional break. Go back
to the debugger, and select the breakpoint you created earlier in the Breakpoint Watch
List pane on the right. Click on the Condition button, and you will get the dialog
shown in Figure 2.9. In the top field enter this:

ttype = 3.

Objects

Figure 2.9 The Set the Break Condition dialog.

And leave the other fields blank for now. Go back to the game and go into the water.
Notice that your movement doesn’t freeze, even though you still have the breakpoint
set? That’s because the breakpoint now will only be operative if the condition of the
breakpoint is met. And since the water is ocean water, type 1, the breakpoint will not
work. Now go back and delete that breakpoint, and add a new one at the same place.
Set the condition the same, but this time set the middle field to 3. Then go back to
the game and run in and out of the water at least three times.

Ha!

See that? The movement froze on the third try. Care to guess why? That’s right, after
the program counter encountered the breakpoint three times, the condition became
invalid, so the breakpoint started behaving as if there was no condition attached.

Objects

In a 3D world, pretty well everything is a virtual object, and it behooves a good game
engine to allow us to manipulate things in the world as objects. TorqueScript pro-
vides flexible and powerful tools and mechanisms for dealing with its objects, which
we'll explore in this and subsequent sections.

Creating Objects

The first order of business is to show you the syntax used when we create objects, and
see how inheritance can come into play. The general form for creating a new object
is

variableldentifier = new ObjectIdentifier(Name[:Provenience])
[{
[intrinsic_datablock_property]l = value;
[scripted_datablock_propertyl = value;
Kl

45

46

Chapter 2 = Working with TorqueScript

The new keyword tells TorqueScript that we are creating a new object here, and it is
to be called whatever is specified by ObjectIdentifier. A couple of optional arguments
are available. If we leave them both out, we will have an anonymous object. If we do
that, then we need to assign the result of the creation to a variable, as specified by
variableldentifier. Something like this will do:

$myObject = new SomeObjectClass();

That assumes that SomeObject is a valid object class. Note that the ensuing code block
shown in the general form between the two braces was left out. You can do that if you
don’t have any properties to create or set. Don't forget the closing semicolon for the
statement, though.

The Name term is an optional valid identifier. Provenience is an existing datablock that
will act as the source for all properties (and their values) that this new datablock will
inherit, if you choose to have it do so. The properties that directly belong to the prove-
nience datablock’s namespace are simply copied into the new datablock’s name space.

For example, let’s create a new Item:

new Item()
{
};

That creates an Item, but doesn’t specify a name or any of the properties, so all of the
properties will get their values from the default values provided by the C++ Item class
constructor. Let’s override some properties:

new Item(AnItem)
{

"100 100 100";
23

position
friction

]

¥

This time we’ve created an Item imaginatively named Anltem and positioned it at
(0,0,0). If this object is thrown, or collides with something and is propelled across the
ground, the friction property will quickly slow it to a stop as the object slides across
the surface.

new Item(AnotherItem : Anltem)
{

position = "150 150 100";
ks

Objects 47

Okay, now we have an Item named AnotherItem and it is positioned at (150,150,100).
In addition to the redefined position property, it will inherit all the properties of
AnItem, which means it will have the same value in the friction property.

new Item(STickItem : AnlItem)
{
position = "200 200 100";
friction = 0.25;
volume = 50;
};

[}

This time we’ve created an Item named SlickItem positioned at (200,200,100). This
time we override not only the position property but also the friction property, giv-
ing the object a negligible 0.25 amount of friction—this tends to make items slide for
a long, long time. As with AnotherItenm, this object inherits the remainder of the intrin-
sic properties and their values that have not been overridden from Anltem. Finally, it
adds a scripted property named volume and initializes it to 50.

Working with Objects

Once we have created an object, we’ll probably want to start to do things to it in our
game. There are a number of object-related functions and methods available in
TorqueScript for working with objects:

= nameToID(identifier|string) When you pass in an object’s identifier variable
(or a string name) this function will return the object’s handle, like this:

#zonelD = nameToID ("FloatySpeedupZone");

or

%zonelD = nameToID (%zoneName);

assuming, of course, that 4 zoneName and "FloatySpeedupZone" have indeed been
assigned an object.

= isObject(identifier|string) This function is used to check whether the identi-
fier (or a string name) refers to a valid object or not. When called, it returns
true if the identifier refers to a real object, false otherwise. You can use it like
this:
if (isObject(%zonelD))

doSomethingCool();

48 Chapter 2 = Working with TorqueScript

.getName() When called from an object, this method will return its name, if it
has one. Do this:

%zoneName = %zonelD.getName();

.setName(identifier|string) When called from an object, this method will set
the identifier (or string name) to be the object’s name. Do it this way:

%zonelD.setName("FloatySpeedupZone");
or this way:

%zoneName = "FloatySpeedupZone”;
%zonelD,setName(%zoneName);

.getID() This is a method common to all objects that is used for the same
purposes as nameTolD. When called from an object, this returns that object’s
handle, like this:

%zonelDcopy = zonelD.getID();

.getClassName() When called from an object, this method will return the
name of its class, like this:

%zoneClass = %zonelD.getClassName();

Tip

When we call an object’s method from that object (or using a namespace, like GameBase), Torque
always implicitly passes that object's handle into the method as the first argument. So be
aware that you need to explicitly extract that argument list with a variable. It's purely posi-
tional—you can use any locally scoped variable identifier you want, although the convention
is to use %this as the identifier since it matches nicely with the C/C++ this keyword. But you
could use any identifier. Sometimes people use %obj instead of %this.

When you call Myobject.DoSomething(%anArg), then your object’s method needs to be defined
this way:
Function MyObject::DoSomething(%this, %arg)
{
//blah blah
|

This way, the contents of %anArg that you provided when you called Myobject.DoSomething will
arrive in your method cradled in the arms of the %arg variable, with Torque magically putting
the handle for MyObject into the variable %this.

Datablock Objects

All objects in Torque are assigned unique ID numbers. We refer to these numbers as
the handles of the objects. We will refer to a variable that contains such a number as
the handle identifier or object name as a matter of convenience. In script code we can
directly use the handle value when using an object, but it is more common, and use-
ful, to deposit the value into a variable and use that variable’s identifier. Assuming
1234 is the ID of a Mexican Jumping Bean object, then:

1234, jump();
and

tbeanlD = 1234;
#beanID. jump();

would do the same thing with the same object. If we use the object’s handle value (the
number) to work with the object, we will get higher performance—the script execu-
tive doesn’t have to do as much looking-up in its tables to find the number. However
we normally won’t know what the number will be when our code runs, so we use the
identifiers. We usually get the identifier values from Torque when we create an object
programmatically, as a return value from some other function call, or passed into our
function by Torque when our function is called.

As you can see, handles can be used to access object elements like properties and
methods. For any object, if you want to discover which intrinsic and scripted vari-
ables it encompasses, and which methods it has, you can use the dump method from
the console described earlier.

Datablock Objects

There is a special kind of object that I call a datablock object that is used quite a bit in
Torque. When we create an object, we can provide it with a property that points to a
Torque storage mechanism called a datablock. The purpose of a datablock is to pro-
vide a “one-stop shopping” location of specific data about an object class.

So, we can have objects that encapsulate all of their intrinsic properties and methods
within themselves, and whose properties can change dynamically as a game pro-
gresses. And then we can have other objects that have all of those same capabilities,
plus contain a property that holds the handle to a datablock that contains more prop-
erties and methods whose contents never change! But wait! There’s more! A datablock
on the server has exactly the same handle on every client! Okay, okay, I'll calm down

49

50

Chapter 2 = Working with TorqueScript

now, or [will after I point out that normal objects don’t carry the same handle as they
propagate from the server to the clients—every normal object instance is considered
unique.

Why on earth would we want to do this, you might be asking yourself. Simple, I say
calmly. It’s a nifty feature. You have object data that changes dynamically (normal
object properties), and object info that is static or constant and protected from change
during the run of a mission (datablock properties).

A few more tidbits: Datablock names are not transmitted to clients from a server, only
the handles are; datablocks aren’t scoped or otherwise culled—if you have a data-
block’s handle, you can always get at its contents no matter where you are in your
program, or whether you are on a client or the server.

Note

It's terminology time! An object is an object—it has properties and methods, and you can
make many instances of an object class, with each instance having its own property values.
We can call these normal objects.

A datablock itself is a kind of object, but we only ever call it a datablock and pretend we don't
notice its “objectness.”

An object that contains a property that holds a datablock handle is called a datablock object.

You know, people notice things. Eventually, everyone who works with TorqueScript
sits back, rubs the side of his nose, and mutters: “Why are some objects made with
datablocks and others aren’t?” It’s because objects that are placed in the game world
always fall into one of two general categories:

A. All of an object’s properties are likely to be unique at some time or another to
different instances of the object.

B. An object has a substantial number of properties that probably need to be
shared between instances of that object class.

Category A describes a set of objects that don’t need datablocks so they just aren’t
created with datablocks. Category B, however, consists of objects that would benefit
from using datablocks. As I pointed out earlier, unlike normal objects, you are only
allowed to have a single instance of any datablock. Furthermore, objects that are cre-
ated using datablocks all share the same instance of that datablock.

Table 2.3 should clarify the difference:

Table 2.3 Normal vs. Datablock Objects

Datablock Objects 51

Normal Object Datablock Object

1. Created directly from a C++ class 1. Created directly from a C++ class

2. Contains intrinsic properties and methods 2. Contains intrinsic properties and methods
3. May contain scripted properties 3. May contain scripted properties

4. Requires a datablock property pointing to
an existing datablock

Compare the following normal object declaration of a MessageVector:

new MessageVector(TheMsgVector)

{
TineSpacing = 32;
TineContinuedIndex = 10
allowedMatches[0] = "http";
allowedMatches[1] = "Torqueserver";
matchColor = "0 0 128";
maxColorIndex = 16;

5

to this declaration of a datablock object of the Item class:

datablock ItemData(TheltemData)
{
category = "Doodads";
shapeFile = "~/data/things/doodad.dts";
i
new Item(Theltem)
{
position = "100 100 100";
rotation="1020 0";
scale="111";
dataBlock = TheltemData;
b;

There you go. In addition to overriding its intrinsic properties, the creation statement
for the Item object, named Theltem, sets the value of the datablock property with the
name of an existing datablock—in fact, the specific datablock is TheltemData. This

52

Chapter 2 = Working with TorqueScript

makes TheltemData a datablock object, while the Item named Theltem and the
MessageVector named TheMsgVector are normal objects.

As you've probably figured out on your own, there are a few different ways we can get
our grubby little fingers on the contents of the TheltemData datablock. We can simply
dereference the dataBlock property through the Item class to get the datablock’s name,
like this:

$db = Theltem.dataBlock;
echo($db);

This will yield output that looks like this:

=>echo($db);
119

Then you can access the datablock’s properties using the handle 119, like this:

Echo(119.category);
=>echo(119.category);
doodads

The 119 value is made up, so you should try this out yourself in the console in the fps
demo. Look around for something like an ammo box, and get its handle from the
Editor Inspector. (Press the F11 key in-game to get the Word Editor, then choose the
Editor Inspector from the Window menu.) Instead of using the name Theltem, use the
handle of the ammo object you found, and then extract the datablock’s handle, like
this (assuming 123 is a valid handle, which it may not be):

$db = 123.dataBlock;
echo($db);

and then you get something like this (the number will be different):

=>echo($db);
456

So now dig into the datablock:

Echo(456.category);
=>echo(119.category);
Ammo

Datablock Objects

There is an easier way to do this:

Echo(123.dataBlock.category);
=>Echo(123.dataBlock.category);
Ammo

We simply drill down through the references to get to the property we are interested
in.

Creating Datablock Objects

We'll spend a bit more time on datablocks and datablock objects to reinforce the use
of inheritance. This datablock object:

new StaticShape(AShape)
{
position = "0 0 0";
rotation="100 0";
scale="111";
dataBlock = SomeShapeData;
b

creates a StaticShape named AShape. It defines the position, rotation, and the scale.
Additionally, it tells the engine to use datablock SomeShapeData to initialize this object’s
datablock. From now on, this object will always be associated with the datablock
SomeShapeData. It’s a shame really. Nice object like that getting mixed up with the likes
of... oh, never mind. In fact, look here:

new StaticShape(AnotherShape: AShape)
{

position = "0 10 0";
b

This time we’ve created a new StaticShape. This one is named AnotherShape. It inher-
its all the properties of AShape but overrides the position. The important thing to
understand is that it still shares datablock ShapeData with the other instance of
StaticShape, AShape. In other words, we have two instances of StaticShape that share
one instance of the datablock SomeShapeData.

It’s useful to know that in general, for every class that has a datablock property, there
is usually a specific datablock class. These datablock classes are usually intuitively
named in a manner illustrated by Table 2.4, by tacking the term “Data” to the end of
the object class name. You can see a complete list of Torque datablock classes in Table
A.8 in Appendix A.

53

54

Chapter 2 = Working with TorqueScript

Table 2.4 Example Datablock Names
Obiject Class Using Datablock Datablock Name

Item ItemData
Vehicle VehicleData
StaticShape StaticShapeData

Declaring Datablocks

Okay, what do we know? We've seen that datablocks are similar to objects in the game
world and that only a single instance of any datablock is created and shared between
any number of datablock-using objects.

Interestingly enough, objects are created, but datablocks aren’t. No, they don’t just
spring into being on the seventh day or percolate out of some cosmic chunk of quan-
tum probability. You see, datablocks are declared.

Here’s how:

datablock DatablockClassIdentifier(Name [:Provenience])

{
category = "CategoryNameString";
[intrinsic_datablock_property] = value;
[scripted_datablock_property] = value;

b

Beyond the datablock declaration keyword, we present a datablock class: this would
be one of the classes in Table A.8 in Appendix A. The Name term is an optional valid
identifier. Provenience is an existing datablock that acts as a source for all properties
and methods that this new datablock will inherit, if you choose to have it do so. The
properties and methods that directly belong to the provenient datablock’s namespace
are simply copied into the new datablock’s namespace.

Now, category is one of the property identifiers, and it is usually set to a string that
identifies the datablock for the Editor Creator.

The rest of the definition is pretty fluid—we can override intrinsic properties just
as we did with objects earlier, and we can add our own properties to the datablock
definition.

ScriptObjects

In all cases, once the datablock gets loaded and propagated to all clients at mission
load time, the values it carries in its properties are immutable for the duration of the
mission.

ScriptObjects

We've seen two kinds of objects, normal objects and datablock objects, both of which
are derived from classes generated internally within Torque.

There is a third kind of object, a sort of roll-your-own, chewing gum and bailing-
wire object that you can create for yourself in TorqueScript called a ScriptObject. A
ScriptObject is a way for us to arbitrarily create and use our own objects, if we have a
need for one that isn’t satisfied by the standard C++ generated objects from Torque.

Creating a ScriptObject

Here’s how we can create a simple one property ScriptObject and a simple method
for it.

$sob = new ScriptObject(MyScriptObject)
| someSillyProperty="Bah!";
;;nction MyScriptObject::GreetTheWorld()
| echo("Hello World!");

|

Then, at some point later on, we can use this object and its method or properties by
using the saved handle, like this:

$sob.GreetTheWorld();

Using ScriptObjects

There are as many ways to ScriptObjects as there are programmers to create them.
One thing that they are handy for is passing arrays into functions and methods, since
Torque does not directly support this kind of operation. Many people have devised
workarounds, like stuffing the contents into a string, then extracting each array ele-
ment as a field within the string once we get inside the function. This is a technique
I've used myself many times.

There is a better and tidier way that involves using ScriptObjects.

55

56 Chapter 2 = Working with TorqueScript

The basic idea is to create a ScriptObject that encapsulates the array as a property. We
then pass that ScriptObject into whatever functions need it. These functions need to
be aware, of course, that they are receiving an object containing the array, and need
to know how to get at the array. Try this out—enter the following code into the mod-
ule main.cs located at the root folder of the Torque demo project (which is \A3D if
you installed the Torque demo at the suggested location). Put the code near or at the
very top. It’s probably a good idea to enable logging to console.log, although you can
examine the output in the console itself.

$sob = new ScriptObject();
for($i = 0; $i < 10; $i++)
{

$sob.theArray[$i] = $i+10;
]
$sob.cnt = %i;

function testFunction(%container)
{
for(%i = 0; %i < %container.cnt; %i++)
{
%element = %container.theArray[%i];
echo("The value of array element" SPC %i SPC "is" SPC %element);

Launch the demo, and when you get to the main menu, open the console by press-
ing the tilde key (~) and then type:

testFunction($sob);
You should get output that looks like this:

= => testFunction($sob);
The value of array element 0 is 10
The value of array element 1 is 11
The value of array element 2 is 12
The value of array element 3 is 13
The value of array element 4 is 14
The value of array element 5 is 15
The value of array element 6 is 16
The value of array element 7 is 17
The value of array element 8 is 18
The value of array element 9 is 19

Working with Files

If you haven’t noticed, it is important to remember to specify how many array ele-
ments there are so that you can step through the array. You could work around this
by establishing a value to stand for an empty element, and use that to mean that you
are at the end of the array. In that case, make sure that the code that populates the
array always and only uses that value for the array element after the last valid element.

Working with Files

We often need to be able to read and write data to files—things like settings and pref-
erences, names, tracking information, or what have you. File I/O is an important part
of programming complex systems, and games are usually fairly complex systems.

The Export Statement

TorqueScript has several ways to help you deal with files. The easiest to use is the
export function, whose general form looks like this:

export(searchString [, fileName [,append]])

This function is commonly used to save preference variables specified by searchString,
but it will work with any variable that’s in scope. We can use the asterisk as the “match
anything” character in the search string. Make sure that filename shows a complete
(and valid) path including the filename plus extension. The append switch is set to true
if we want to append the output to the file, and set to false to overwrite the existing
file. For example:

fresult = export("$Pref::Game::*", "./game/prefs.cs", False);

Don’t forget those double quotes surrounding both the search term and the filename!

In that example, every variable that starts with $Pref::Game:: will be written to the file
in its entirety, with value assignments and all the necessary correct syntax to make a
script statement. The syntax needs to be correct because the way you would read a
file written this way is with the exec function, which will open the file, load it, and
begin executing the script statements it encounters. Pretty easy!

FileObjects

Sometimes we need to be able to arbitrarily write and read data to and from files at
will. That’s easily accomplished using a handy thing called a FileObject.

57

58

Chapter 2 = Working with TorqueScript

FileObjects are bonafide objects, and all of the things we’ve seen about objects in gen-
eral earlier in this chapter certainly apply to FileObjects as well. Type the following
two sample functions into the script module \A3D\main.cs, as you've done with ear-
lier code in the chapter:

function writef()

{
#file = new FileObject();
%file.openForWrite("folder/test.dat");
tfile.writeline("Tar Fu Fu Bar!!!");
gfile.close();
tfile.delete();

}

function readf()

{
#file = new FileObject();
#file.openfForRead("folder/test.dat");
ttext = #file.readline();
echo("the text is:" SPC %text);
%file.close();
tfile.delete();

]

Re-launch the Torque demo, and when you reach the main menu, open the console
and enter writef(); and then press the Enter key, followed by readf(); and the Enter
key. You should see the contents of the file displayed for you. You can modify the text
by creating the text file with a text editor, and then just running readf();.

Although its obviously more complex than using the export function, it works for any
arbitrary data, not just variables.

The data is read in line-by-line. If you need to read multiple lines (or write them),
that is easily done by looping the read or write lines, and testing to see if you are at
the end of the file using the isEOF method, like this:

while (!file.isEOF())

{
ttext = #file.readline();
)

After you've stuffed %text with the contents of a line from the file, you can then hack
away at it to your heart’s content.

Working with Strings

Working with Strings

Standard strings, in double quotes, behave as most of us would expect. Fire up the
Torque demo, open the console, and try a few examples. Type in echo statements like
the following and observe the output:

echo("Hello World!");
echo("1.5™ + "0.5");

Heh. I get a kick out of that second example. In most languages, those two strings
would be treated like strings, and an operation like that second one would yield some-
thing like:

1.50.5

for the output of the echo command. But here, Torque recognized that they were
numeric values and added them together when told to by the addition operator.

Tagged Strings
Now then, strings that appear in single quotes, like this:

"abcd’

get special treatment in TorqueScript. These strings are called tagged strings,and they
are special because not only do they contain string data, they also have a special
numeric tag associated with them. Tagged strings are used for sending string data
across a network. The value of a tagged string is only sent once, regardless of how
many times you actually do the sending. On subsequent sends, only the tag value is
sent. Tagged values must be detagged when printing.

Try these examples:

$a="This one is normal";

$b='This one is tagged');

echo("Normal string: "@$a);

echo("Tagged string: "@$b);
echo("Detagged string: " @ detag('$h'));

That last line shows a blank because even though we’ve created the tagged string, it
has not been transmitted fo us. You can only detag a tagged string that you have
received. You can’t detag it if you've created it. Okay, sorry, it was a trick.

59

60

Chapter 2 = Working with TorqueScript

Here are the string operators:

@ concatenates two strings
TAB concatenation with tab
SPC concatenation with space
NL new line
To “concatenate” two strings means, simply, to append them together, end-to-end. If

we concatenate the strings “Hello “ and “World” we end up with a longer string that
says “Hello World™.

The basic syntax for these string operations is:
“string 1" op "string 2"
where op is a string operator. For example, try these in the console:

echo("Hi" @ "there.");
echo("Hi" TAB "there.");
echo("Hi" SPC "there.");
echo("Hi" NL "there.");

Escape Sequences

There is one last important feature of strings: escape sequences.
Escape sequences are shown in Table A.7 in Appendix A.

TorqueScript allows you to create new line and tab characters using the backslash
character as the escape character, familiar to most programmers. These combinations
are called “escape sequences.” Escape sequences are used to indicate to TorqueScript
that the following character is a special character.

Escape sequences are also used to modify the characteristics of the text that is printed
to the console and GUIs. You can colorize by using \cn, where nis a value between 0
and 9 that represents a pre-defined set of colors (See Table 2.5). Now n is an index
into a color table defined by the property GUIControlProfile.fontColors[]. The colors
6 to 9 are “system” colors defined in the file common\ui\defaultProfiles.cs. Colors 1
to 5 are “game” colors defined in the file demo\client\ui\defaultGameProfiles.cs. A
usage example would be:

echo("\c2ERROR! ! !\c0 => my bad!");

If you type that in the console, you will see that it prints the line "ERROR! ! ! => oops!”
with the part between \c2 and \c0 in red, and the part after the \c0 in black.

Moving Right Along 61

Table 2.5 Color Escape Codes

Escape code rgb value Description

\cl 4235 105" client join/drop, tournament mode

\c2 219200 128" gameplay, admin/voting, pack/deployable
\c3 77 253 95" team chat, spam protection message, client tasks
\c4 40 231 240" global chat

\c5 200 200 50" used in single player game

\c6 50 50 50" dark gray

\c7 5050 0" dark yellow

\c8 00 50" dark blue

\c9 0500 dark green

\c0 44172 181 defined by GUIContralProfile.fontColor

Moving Right Along

Whew! That was a bit of a crash course in TorqueScript right there. We covered the
essential points, and you should have a better understanding of what you can do with
TorqueScript, and what some of its more powerful capabilities are.

We covered how to troubleshoot difficult programs, and the tools you have at your
fingertips, along with some techniques that have been proven to be effective.

We learned about the various kinds of objects that Torque makes available to
TorqueScript, and how to work with them to great effect.

Then we saw how to save data to disk files and get it back again, stuffing the data into
string variables.

And finally, we saw how we can manipulate strings and modify them when printing
to the screen.

This page intentionally left blank

CHAPTER 3 i |

VECTORS AND
MATRICES

hen we need to manipulate objects in a 3D world, we often need to deal

with two spatial characteristics of the objects: location and motion. You

may remember from trigonometry classes that you can represent motion
by using mathematical constructs called vectors and examine locations in mapped
spaces using matrices.

In this chapter, we will take a look at how we represent and manipulate vectors and
matrices in general, and how we can use them specifically in game development using
TorqueScript.

I don’t expect you to be a math wizard to understand this chapter. The explanations
are given in a way that will help you understand how the concepts are applied prac-
tically in 3D games. You already should understand coordinate spaces, as well as basic
math including square roots and the like.

If you are a math wizard, then you'll probably want to skip to the “Applied Techniques
Using TorqueScript” section.

Understanding Vectors
You’ve probably seen and heard something like this on TV or in the movies:
“Nowhereville Control Tower, this is Happy Skyways Flight 13. We are lost in a

severe blizzard at 10,000 feet altitude, somewhere south or southeast of you. If
you can see us on your radar, we need you to give us a vector to the runway!”

“Roger Flight 13, we see you. The vector to the runway is 330 degrees, at 10
miles.”

63

64

Chapter 3 = Vectors and Matrices

In this exchange, the tower controller, having spotted the hapless flight on his radar
scope, has told the pilot in which direction to point his airplane (330 degrees) and
how far away the runway is (10 miles). This combination of direction and distance is
precisely what a vector is.

The vector’s ability to convey direction and distance is the reason that the primary
use for vectors and vector math in games is to calculate translations, or movements
in space.

What's a Vector, Victor?

A very strict and quite terse definition of a vector is a “directed quantity.” Those two
innocent seeming words embody a constellation of capabilities, as we will see.

We can expand our definition of a vector to: “a measurement having both direction
and magnitude.” Everyone knows what direction means, and magnitude, of course,
refers to the measurement of how much of something (anything) there is. In the prior
example, the heading in degrees is the direction, and the distance is the magnitude;
from those components, we can assemble a vector to the runway from the airplane’s
position.

Among the many talents of this creature—the vector—is the ability to disguise itself.
Vectors can be represented in several different ways. How we depict a vector depends
either on what we want to do with it or what it is used to represent. Figure 3.1 shows
a line vector on a two-dimension graph—a geometric representation of a vector.

It’s not hard to visualize the Happy Skyways Flight 13 being located at the base of the
arrow, where X=2 and Y=-4, with the runway being located at the tip of the arrow,
where X=-3 and Y=5. And of course, the direction that the arrow is pointing indi-
cates the direction that the airplane needs to travel to get to the airport.

So,a vector can look like an arrow that tells us how far to go and in what direction.

We can place ourselves at the location of the lost airplane, at the coordinates X=2 and
Y=-4, which we depict as a tuple like this: (2,-4), as shown in Figure 3.2.

Casting an eye toward our destination, which the diagram places at (-3,5), we can
easily see that to get to the runway, we need to move five miles in the negative X direc-
tion (AX=-5), and nine miles in the positive Y direction (AY=9). Therefore, we can
also describe the direction and distance we need to travel with a tuple, like so: (-5,9).
That’s another way to depict a vector. This vector tuple (-5,9) provides us with the
same information that the arrow did in Figure 3.1—direction and displacement (or
distance), although the information is not as obvious as it is when shown as an arrow.

Understanding Vectors

-5 3
Figure 3.1 A simple 2D vector diagram.
(3,9 '
L t o
&
]
|
! ~
I ™
I
- — —2
AY=9.
!) ! 1
]
' f
S5 4 3 2 4 K 5 v
o
! -~
1 -
1
! e |
1§ T -
! e
'+ _.A.X_';.. s _5.. .(2:'4)

Figure 3.2 A different simple vector diagram.

65

66

Chapter 3 = Vectors and Matrices

Note

The triangle (A) that you see in Figure 3.2 is called delta, and it is used to indicate a change
in a value. So when you see AX, you should read that as “delta X" or “the change in X." For
example, AX=5 indicates that the change in X is 5.

So, a vector can also be a series of numbers, or a tuple.

There are also algebraic notations that are used to represent vectors. If you take a
quick look at Figure 3.3, you will probably recognize the geometric annotation used,
where A and B are end points of the line AB.

B

Figure 3.3 Line AB.

Despite the different annotation, you can still see it’s the same vector that Figures 3.1
and 3.2 show. If we decide to use that line as a vector then we could specify it alge-
braically like this:

—

AB

So, a vector can be represented symbolically.

Understanding Vectors

Note

The vector diagrams you've seen so far have the 0 point of the axes situated at what amounts
to an arbitrary location in space. The reason for this is to provide space in the diagram to show
the axis values in both positive and negative directions, and to show how the end points of
a vector in a real-world situation can be anywhere within a coordinate space.

We can draw those same diagrams with one of the vector endpoints rooted at 0 in both axes
at the location of the airplane, like this:

F | o ‘ . 1 7 1 i

Or from the location of the runway, like this:

We'll stay with the 0 location being somewhere between the airplane and the runway, how-
ever, because it implies a more neutral perspective to the situation.

67

68

Chapter 3 = Vectors and Matrices

There are other more complex vector representations, called vector equations and col-
umn vectors, which we employ when we actually want to perform calculations.

You can think of any vector directed in two dimensions, such as the example we have
been using that derives from the Happy Skyways flight, as having an influence in two
different directions. The vector has two parts. I know it seems simplistic to state this
so baldly—it seems to be blindingly obvious. But it is an important point.

Each of the parts of this two-dimensional vector is called a component. A 3D vector
has three components, a 4D vector has four components, and so on. The components
of a vector indicate how much total influence that vector has in a given direction. The
combined influence of the two components is the same as the influence of the single
two-dimensional vector; therefore, the single two-dimensional vector can be replaced
by the two components. If we do that, we can use the vector in equations.

A generalized 2D vector equation would be v = xi + yj where i and j are called the
unit vectors of the equation; this means that even though they are parts of compo-
nents, both iand j are vectors for each axis in their own right. We’ll see how compo-
nents can be treated as vectors later in this chapter. By convention, lower case letters
are used for vectors.

Note

A unit vector is a vector with a length of 1. The unit vectors for the vector in Figure 3.1 look
like this:

Of course, a unit vector can point in any direction; its length will always be 1. We always con-
sider the unit vectors for a given vector to originate at that vector's origin (tail, or start point).
The unit vector for any known vector can be found by dividing that vector by its magnitude.
This is called normalizing the vector.

In the equation, x and y are the axis coefficients of their respective terms, and indi-
cate the magnitude of the vector in that axis. Each unit vector, combined with its axis
coefficient, is a component of the vector.

Understanding Vectors 69

Fetching back to the earlier Figure 3.1, we can show that particular vector using a vec-
tor equation, substituting -5 for x and 9 for y, like this: v = -5i + 9j.

So, a vector can also be represented by a vector equation.

For working in three dimensions, we obviously need to incorporate the third dimen-
sion into the vector equation. We end up with this for the generalized form: v=xi +
yj + zk. In this case, the unit vector for the third-dimensional component is repre-
sented by k, and its axis coefficient is represented by z as the magnitude of the com-
ponent. Returning to the Happy Skyways flight, the third component of the vector,
measuring the third dimension, would be the altitude of the airplane: 10,000 feet.
This complicates the vector diagram quite a bit. Figure 3.4 shows the problem in a
3D format.

ZNLES

2z 5 4 5

+ X

2 miles (10,000 £t)
aliitude

Figure 3.4 3D vector diagram.

For the sake of clarity, I've added in a dashed line to demonstrate the ground track of
the airplane’s vector—this is the tracing of the route of the airplane on the ground,
and it should match the 2D vector diagram of the airplane’s vector we saw in Figure
3.3. If you mentally subtract the Z-axis from the diagram in Figure 3.4, you will see
that the ground track does match the 2D vector in Figure 3.3.

70

Chapter 3 = Vectors and Matrices

Now 10,000 feet is pretty darn close to two miles, so we will use miles as the unit to
match the unit of the other two components. Since the airplane needs to descend
from its altitude to the ground level of the runway, we need to ensure that the 2k com-
ponent is a negative value. Therefore, we can expand the earlier vector equation exam-
ple to look like this: v =-51 + 9j + -2k.

Finally, another vector representation—the earlier mentioned column vector—looks
like this:

X
vV =ly
z

You will recognize x, y, and z as the axis coefficients of the components of the vector
from our previous discussion. That means that we can show the vector that guides
the Happy Skyways flight safely on to the runway at Nowhereville like this:

5
v=|9
-2

It is possible that you are now thinking that the column vector looks quite a bit like
a single-column matrix. Well, you'd be correct if you were thinking that. In fact, we’ll
dig deeper into that similarity later in this chapter.

So, a vector also can be represented by a column vector, which strongly resembles
a single-column matrix.

Which forms you should use for representing a vector depends on how you intend
to use it.

Note

An earlier note described how the vector diagrams used an arbitrary location in space for the
zero point. Column vectors aren't so arbitrary—implicit in the notation is the notion that each
vector has its tail (start point) at zero, and the coefficient values are the head (end point) of
the vector.

Using Vectors

It’s fairly evident that vector diagrams, like Figure 3.1, are useful visual presentations
that can be used to describe a problem that vectors will be used to solve. However,

Understanding Vectors

when we need to obtain specific values, we are going to need to use one of the more
precise forms.

There are many ways to manipulate and use vectors, but I will focus on how to use
them in the context of this book—math for use with 3D game graphics.

Remember when I described what a vector’s components were—essentially, the mea-
sure of a vector along one of the axes? Well, here’s an interesting little twist: Each com-
ponent of a vector can itself be treated like a vector. Once we do that, we can work with
the components in vector form, and perform calculations with them.

Figure 3.2, way back there a few pages, shows the components of the example vector
we’ve been working with. Figure 3.5 shows these components now in vectorized form.
Notice that each of the new vectors, v,, (westerly directed vector) and v,, (northerly
directed vector) has no variation in one or the other of its axes.

A
Vn
—
Figure 3.5 Vectorized components.
Vector Addition

If we add the two vectors by placing the two vectors from Figure 3.5 nose-to-tail, we
end up with a resultant vector, v, as shown in Figure 3.6. Note that when we do this,
we make the assumption that we are placing the tail, or start point, of the first vector
(v,,) at the (0,0) coordinate. Any vectors we add are placed nose-to-tail to this vec-
tor. Once we get them placed, the resultant line is drawn with its tail at (0,0) and its
nose at the location of the nose of the last added vector. As you know already, that
resultant vector is the vector that Flight 13 needs to get to safety.

71

72

Chapter 3 = Vectors and Matrices

Figure 3.6 Vector addition resultant.

Usually, when doing math with vectors, we work with a numerical form instead of a
diagrammatic form. Later, we can use the diagram form to verify our numbers, if we
need to. So let’s convert our two new vectors, v, and v, to column vector format, like

)

Now we have a form we can work with, mathematically. We can add the two vectors

like this:
-5 ol_ (-5
o)*(s)= [s]

Of course, all we’ve done is worked our way back to what we already knew. But now
you can see that we can add two vectors in column form by simply summing the val-
ues in each row as we go across. This applies, no matter how many components there
are to the vectors. Here is the 3D version of the addition:

Vi=SEVw+Vn=

-5 0 0 -5
Visvw+vn+Vva=[0|+|9]|*|0| =|9
0 0) \- -2

This resultant matches the resultant that we obtained in Figure 3.6. As you can see,
adding vectors is really quite straightforward.

Understanding Vectors 73

Note

Every vector can be considered to be the hypotenuse of a right triangle. That being the case,
we can apply the Pythagorean Theorem to the vector in order to figure out the length of the
vector. The theorem states that the square of the length of the hypotenuse is equal to the sum
of the squares of the lengths of the two sides adjacent to the right angle, or a2 + b2 = 2,

The Happy Skyways vector has an x compenent of -5 and a y component of 9. The x and y
components are the same as the sides adjacent to the right angle, so we should square each
value. That yields 25 and 81 which we add together to get 106. That means that 106 is the
square of the length of the hypotenuse, which is the vector. The square root of 106 is 10.3
(rounded to one significant digit). Therefore, the length of the vector is 10.3.

The length of a vector is sometimes called the modulus of the vector. We write it using a nota-
tion like this: |a| or |v,|, or whatever.

Remember that when dealing with game graphics, we use x and y (and sometimes z) to rep-
resent the axis components of vectors, instead of a, b, and ¢, which are used to show the sides

of a triangle in general form.
So, for two dimensions,
V] = A/ x2+ y2+ 22

and for three dimensions,

You may breathe now.

Vector Subtraction

Vector subtraction is also quite simple, but there is a twist. You will recall that in basic
arithmetic, subtracting b from a is the same as adding a to the negative of b. We can,
and should, do the same thing when subtracting vectors; negate all of the signs of the
coefficients of the vector being subtracted, and then add it to the first vector, like this:

— N

-0
9

This yields:

Vi=Vw+ -Vn = +

0

74

Chapter 3 = Vectors and Matrices

We can verify the rightness of this approach by doing a quick vector diagram, adding
v,, to the negated v,,, nose-to-tail as shown in Figure 3.7.

Vw

Figure 3.7 Vector subtraction resultant.

You'll notice that v,, the resultant of subtracting v, from v,,, is completely different
from the v, that you get when adding the same two vectors. And that’s as it should
be!

Scaling

When scaling a vector, we are simply making it longer or shorter. The direction never
changes. We scale a vector by multiplying each component by the same value; this
value is called, strangely enough, a scalar. A scalar is a value that has a magnitude, but
no direction.

You will recall the general form for a single-column vector:

|

When we are scaling a vector, the general form is:

kx
kv =|ky

Understanding Vectors

So, if we have the vector

2
v =|-4
6

and we want to scale it by 2.5, then the result is

25x2 5
v= |25x-4] =|-10
25x6 15

It’s also significant to note that if our scalar is negative, then the resultant vector will
be pointing in the opposite direction.

Finding Angles

Let us assume that you have two vectors, u and v, oriented as shown in Figure 3.8,
and they diverge by the angle 6 (that symbol is pronounced “theta”). Let us further
suppose that you're thinking, “It would be mighty nice to actually know what that
angle is!”

‘jm

Figure 3.8 Divergent vectors.

Well, don’t fret: As long as you know enough about the two vectors, you can calcu-
late that angle using a vector operation known as the dot product. The dot product is
called that because the symbol used to denote the operation is a “dot”—e.

There are two different definitions for the dot product for two vectors. Which defin-
ition you use depends on what you are trying to do.

75

76 Chapter 3 = Vectors and Matrices

Assuming two vectors are defined according to these equations:
u=ai + bj
v=xi+yj

the primary dot product definition is u ® v= lullvl cos 0. In words that reads, “the dot
product of the vectors u and v is equal to the magnitude of vector u times the mag-
nitude of vector v times the cosine of the angle theta.”

The alternate definition is u ® v =a x + b y, which reads, “the dot product of the vec-
tors u and v is equal to component a times the component x plus component b times
the component y”

I'm not going to go into the detailed derivation that shows how we arrive at these
equations, but I will show you the 5-cent brief cook’s tour of how we use them to find
the angle between the two vectors. Figure 3.9 shows the two vectors with their com-
ponents in more detail.

A

)q:

Figure 3.9 Divergent vectors with component values.

Here again are the vector equations for the two vectors:
u=ai+bj

v=xi+Yyj

therefore,

=>uev=ax+by

Understanding Vectors

and

=>uev=lullvlcos®

therefore,
=>uvcosB=ax+by

and finally,
=>0=cos!(ax+by)/(lullvl)

Using this formula, let’s plug in some numbers from Figure 3.9: for vector u, a = -5
and b = 9, and for vector v,x =0 and y = 9.

SO
0 = cos! ((-5)(0) +(9)(9)) / ((10.3)(9))
0 = cos! (81/92.7)

0 = cos! (0.874)

0 = 29.0 degrees

There you have it. The angle between vector u and vector v is 29.0 degrees. Cool, huh?

Finding Normals

A normal is a vector that is at right angles, or perpendicular, to a plane. In 3D geom-
etry, two vectors, like the two we were just working with when we were finding angles,
define a plane. A vector that is perpendicular to those two vectors would be the nor-
mal for that plane. There are various reasons why normals are useful to us. For exam-
ple, if you need to know which way is up, compared to the ground, you can compute
the normal. There is also a detailed graphic texture rendering technique called nor-
mal mapping that is used to enhance 3D models.

Figure 3.10 shows the vectors u and v again, this time visually oriented differently.
Vectors u and v are the same vectors we dealt with when we were looking for the angle
using the dot product, except now they are shown in three dimensions. Although you
might find it hard to tell, vector w is perpendicular to both of the other vectors, there-
fore vector w is the normal vector for the plane uv. Also, note that vector w is shown
to have a length of 1. When we are seeking the normal vector, we are really only inter-
ested in obtaining the unit vector for that normal; you already know that a unit vec-
tor will always have a magnitude of 1.

77

78

Chapter 3 = Vectors and Matrices

1-5.9 0/
0.2, 0/

w

Figure 3.10 Vectors in three dimensions.

We can calculate the information needed to draw that normal from the known spec-
ifications of the other two vectors by using the cross product operation. The symbol
for the cross product is X. So when you see u X v, you read that as “u cross v’—that
isn’t the times symbol.

The equation for the cross product of two vectors is:
uXv=n lul Ivlsin 8

where n is the normal vector, and lul and Ivl are the magnitudes of their respective
vectors (just in case you forgot what the | | meant).

The work involved in computing the cross product of two vectors is quite a bit more
involved. As I did with the dot product operations, I'll skip some of the proofs and
derivative math.

First we need to obtain our values and we can do that using Figure 3.9 again, since
the only values we don’t have in that 2D diagram are the magnitudes of the Z-axis
components. You can see in the diagram that the Z-axis components for both u and
v are zero, so that takes care of that.

Understanding Vectors

For vector u:a = -5,b = 9, and ¢ = 0; and for vector v, x =0,y = 9,and z = 0.
Here are our two vector equations; this time it’s the 3D version:
u=ai+bj +ck

v=xi+yj+zk

and these can be expressed like this for a cross product operation:
uxv=(bz-cy)i- (cx-az)j+ (ay - bx)k

So we plug in our values and get:

u = -5i + 9j + 0k

v=0i+9j+ 0k

uxv=((9)(0) - (0)(9)i- ((0)(0) = (-5)(0))j + ((-5)(9) - (9)(0)k
uxv=(0-0)i+(0-0)j+(-45-0)k

uxv=(0)i+ (0)j+(-45)k

Now since the unit vectors have a magnitude of 1, we can look at the coefficients for
i, j, and k, and accounting for the sign of the unit vector in each case, we get a set of
coordinates that specifies our normal vector: (0,0,-45) .

So, w = (0,0,-45).
Next we need to obtain the magnitude of our vector. Remember Pythagoras?

Well, since two of the sides of w have zero length, we can dispense with them in our
calculation. And since taking the square root of the square of a number just equals
that number, we can forget about the rest of the equation as well, and just take 45 as
the magnitude!

So, lwl = 45.

Now we need to find n, the unit vector for w, which we do by performing a scaling
operation. As we learned earlier, the unit vector for any known vector can be found
by dividing that vector by its magnitude, like this:

FO\ [

5l |0
w _|0]|_
N=iw = 45|~ 4
45| |4
L451 \ }

79

80

Chapter 3 = Vectors and Matrices

Whew! Finally, we have our normal vector: n = (0,0,1).

One more twist: There are actually two normals, since there are actually two vectors
that are perpendicular to a plane. The equations are slightly, but significantly, differ-
ent if the normal is facing the other way, but there is no need to worry about that
here. The purpose of these sections has been to show how vectors are used, but you
won’t have to do the work manually like we did here. TorqueScript has many useful
functions for doing this work that we can call upon to avoid doing the math by hand.
Good thing, too!

Understanding Matrices

We’ve just seen how vectors can be useful when dealing with translations, or move-
ment, of objects in space; similarly, matrices are primarily of interest to us when we
need to perform transformations and rotations—operations that change the shape or
orientation of objects. Sometimes, dictated by circumstances, we also use matrices
for translation operations.

A matrix is a table of numbers arranged in rows and columns, with brackets (usually
square) around the outside like this:

365
412
571

Actually, the elements in a matrix can be letters or functions instead of numbers. A
matrix is a sort of grid in which we can store such elements in indexed locations. In
the matrix above, the number 4 is in row 2, column 1.

However, matrices are not just used to store data. They can be added, subtracted, mul-
tiplied, and generally manipulated, so that we can get at much greater information
about the data and what it represents.

In fact, you've seen how a column vector is really just a single column matrix. There
are also other ways that vector math can be performed with the help of matrices that
we didn’t cover, since they didn’t suit our purposes.

If a matrix has m rows and n columns, we say it is an mxn matrix or that the size or
dimension of the matrix is mxn. The example above is a 3x3 matrix.

Understanding Matrices

The general form for a matrix is:

ell el2 .. eln

R €2l e22 .. e2n
eml em2 em3 emn

Matrix A, in that example, shows that a matrix can be any number of rows or

columns. A matrix where m = n is called a square matrix.

By convention, a matrix is represented symbolically by a capital letter. If we want to
write a general matrix A, we denote the element in row i and column j as e;;. Note the
use of a lower case letter to specify an element in the array. We can refer to an ele-
ment with a matrix using standard array notation. For example, the value 7 in this
maftrix

3 63 2
1452
57 -6

would be A(3,2). This notation is handy, because it conforms to the standard array
notation used in most programming languages.

There is a special matrix, called the identity matrix that looks like this:

100
010
001

One of the neat things about the identity matrix is that it shows quite clearly the rela-
tionship that can exist between vectors and matrices. If you take the first (left) col-
umn, read from top-to-bottom, you have the x,y, and z values for a non-rotated X-axis
unit vector! The middle column is for the Y-axis unit vector, and the last column is
for the Z-axis unit vector.

The Matrix: Explanations

The handiest feature of matrices, in my humble opinion, is that for each of the fun-
damental operations that you would want to perform with an object in the 3D world,
there is a specific matrix configuration that you can use. Just plug in the numbers,
and out pops the result.

81

82

Chapter 3 = Vectors and Matrices

Okay, so the result actually doesn’t pop out automatically, but there are clear and con-
cise steps to follow, and it’s pretty easy to memorize which matrix to apply to a given
problem. Matrices have a convenient visual appearance that is a great help to recog-
nizing and remembering them—not at all like gazing at complicated looking and
tricky formulas and equations (although you will never get away from complicated
and tricky formulas and equations in this business).

Using Matrices

Figure 3.11 shows the matrices that can be used for the three transform operations:
translation, scaling, and rotation.

100 tx sx 000
010ty 0sy 00
001tz 00sz0
0001 00 01
Translation Scaling
cos@ -sin@ 0 0 1 0 0 0 cos@ 0 sin@ 0
sin@ cos@ 0 0 0 cos@ -sin@ 0 0 1 0 0
0 0 10 0 sin@ cos@ 0 -sin@ 0 cos® 0
0 0 0 1 0 0 0 1 0 0 0 1
X-axzs Y-axas Z-axis
Rotation Rotation Fotation

Figure 3.11 Transform matrices.

Moving Stuff

Although you might find yourself thinking in terms of vectors when you need to
translate an object, you can also use a matrix to move an object. It's one of the sim-
plest matrix operations, so let’s have a peek.

In Figure 3.11 you can see that the translation matrix is essentially a 3x3 identity
matrix with an extra column added at the end, with three new terms in the first three
rows of the last column. Those terms are our displacement values for the three axes.
Basically, a movement vector has been picked apart and dropped into those three
spots.

Understanding Matrices

The extra row is a mathematical construct that’s used to make sure the math works
out right for a larger matrix. We need to have the same number of rows as columns.

Remember Happy Skyways Flight 132 Well it seems those poor bastages haven’t made
it to safety yet. Let’s take their current location as (2,-4,2), and the vector to the run-
way (including altitude) as (-5,9,-2).

We create our translation matrix by plugging the vector values into the translation
matrix like this:

100-5
0109
001 -2
0001
Then, being sneaky like we are, just assume our location to be a vector, and not just

any vector, but a column vector (remember those?). That way, our current location
coordinates end up looking like this:

— A1

Note that I added a 1 as a fourth row. That’s simply to make sure that when I use the
vector in a multiplication operation, which I will be doing, that the math works out
properly. Math guys fudge the numbers all the time. Heh. Well, actually it is a legiti-
mate way to ensure that the matrix operations work correctly. No actual hanky-panky
took place there.

So, when we multiply the vector by the translation matrix, we will perform the oper-
ation described by this general form matrix multiplication guide:

al0all al2al3] |bl alOb0 + allbl + al2b3 +al3b3
a20 a2l a22 a23| |b2 a20b0 + a2lbl + a22b3 + a23b3
a30 a3l a32a33] |b3 a30b0 + a3lbl + a32b3 + a33b3

a00 a01 a02 a03 0] [aODbO + a01bl + a02b3 + a03b3

Figure 3.12 Matrix multiplication guide.

83

84

Chapter 3 = Vectors and Matrices

Using real numbers, it looks like this:

0+ 0+ 2+-2
0+ 0+ 0+1

oo™
o9 -
o-o°
-0 O ln
———
—
—_—2 At
—_—
L}
—_— P

2+ 0+ 0+-5 3
0+ -4+ 0+9| _ |5
4
1

And look at that! The resulting vector is over there on the right, if you lop off the
extra 1 at the bottom (remember I added that in at the start? To make the math
work?), then we get our new location vector (-3,5,0).

The matrix rocks.

Note

To be able to multiply matrices, the number of columns in the first matrix must be the same
as the number of rows in the second matrix. The product matrix will always have the same
dimensions as the second matrix. Pay attention to the matrix multiplication ordering. The posi-
tion of the matrices are not interchangeable. A times B is not equal to B times A.

Sizing Stuff

Changing the size of things is just as easy. Instead of the translation matrix I used in
the previous discussion, you use the scaling matrix. This one’s on your head. Look at
Figure 3.11, get the scaling matrix, and then use the matrix multiplication guide I
showed you in Figure 3.12 and apply it in the same way that you did for the transla-
tion. Remember that sx, sy, and sz are your scale factors.

Rotating Stuff

Rotation is a bit more complex, though not really any more difficult. The various
rotation matrices certainly appear more complicated, as you can see in Figure 3.11.

Rotating around any single axis is accomplished in exactly the same way as the trans-
lation or scaling—just multiply the appropriate rotation matrix with the vector.

We can also apply rotations in all three axes at the same time. In order to do this, we
need to decide what the order of the rotations will be, and then successively multiply
the rotations with each other in that order until we get a product rotation matrix that
we can apply to our vector. We need to keep in mind that our vector will be a unit
vector that tells us which way our object is facing.

Understanding Matrices

Let’s say we are going to rotate our object by 10 degrees around the X-axis followed
by 5 degrees rotation around the Y-axis and then 45 degrees rotation around the Z-
axis. We need to calculate the cosine, sine, and negative sine of each theta, which we
can do by using a calculator or the sine/cosine tables. The calculated values are shown

in Table 3.1.

Table 3.1 Sine and Cosine Values for Rotation Example

Operation 0=5 0=10 0 =45
Cosine 0.996 0.985 0.707
-Cosine -0.996 -0.985 -0.707
Sine 0.087 0.174 0.707
-Sine -0.087 -0.174 -0.707
So our X-axis rotation matrix is:
[0.985 -0.174 0 0]
0174 0985 0 0
0 0 1 0
| 0 0 0 1
And our Y-axis rotation matrix is:
1 0 o0 o]
0 0.996 -0.087 0
0 0.087 0.996 0
.0 0 0 1 3

And finally, our Z-axis rotation matrix is:

[0.707 0 0.707 0]
0 1 0 0
0.707 0 0.707 0

.U 0 0 1

Then we need to multiply (or concatenate) our matrices successively. Figure 3.13
shows the general form for multiplying two 4x4 matrices. The product is a little bit
dense with values, so it looks quite a bit larger than the other matrices in the picture,

but it’s still a 4x4 matrix. Essentially what you are doing is multiplying the elements

of each column with the corresponding element for each row in the other matrix.

85

86

Chapter 3 = Vectors and Matrices

a00 a01 a02 a03 || bO0 bO1 b02 bO3
al0 aill al2 al13 || b10 bi1 bi2 bi3
a20 a21 a22 a23 || b20 b21 b22 b23
a30 a31 a32 a33 || b30 b31 b32 b33

[a00b00+a01b10+ a00b01+a01bi1+ a00b02+a01b12+ a00b03+a01b13+ |
a02b20+a03b30 a02b21+a03b31 a02b22+a03b32 a02b23+a03b33
al0b00+a11b10+ alOb01+alib11+ ai0b02+aiibi2+ al0b03+al1b13+
a12b20+a13b30 a12b21+a13b31 a12b22+a13b32 a12b23+a13b33
a20b00+a21b10+ a20b01+a21b11+ a20b02+a21b12+ a20b03+a21b13+
a22b20+a23b30 a22b21+a23b31 a22b22+a23b32 a22b23+a23b33
a30b00+a31b10+ a30b01+a31b11+ a30b02+a31b12+ a30b03+a31b13+

| a32b20+a33b30 a32b21+a33b31 a32b22+a33b32 a32b23+a33b33 |

Figure 3.13 Multiplying 4x4 matrices.

Performing the actual operation is a bit tiresome; you have to pay close attention to
which row and which column in which matrix you are working with, and what you
intend to do with it. In short order, the pattern will become clear, and you will be able
to zip right along like an old-time expert matrix-multiplyin’ fool. Figure 3.14 shows
the operation where the X-axis matrix is multiplied by the Y-axis matrix. This has the
effect of combining our X-axis rotation and Y-axis rotation.

XY
0985 -0.174 0 0] |! 0.985 -0.173 0.015 0
0.174 0985 0 0]|0 0 996 0087 0 0. 174 0981 -0.086 0
0 0 1 0 00 087 0996 0 0087 0.996 0
0 0 0 0 1

Figure 3.14 XY operation.

Then we need to factor in the Z-axis rotation, which we do by multiplying the XY
product matrix by the Z-axis rotation matrix, as shown in Figure 3.15.

0.174 0981 -0.086 0 0.184 0981 0.063 0
0 0087 0996 0 -0.704 0.087 0.704 0
0 0 1

-0.707 0 0707 0

0.985 -0.173 0.015 o] [0707 0 0?07 0] [0686 -0.173 0.707 0

Figure 3.15 XYZ operation.

Applied Techniques Using TorqueScript

There you go. Now all of the rotations are contained in a single matrix, which you
may now proceed to apply to your position vector.

You can also factor in the translation matrix the same way. Except there is a short cut:
All you need to do is insert your translation vector into the top three rows of the last
column on the right, so that it looks like this:

0.686 -0.172 0.707 tx
0.183 0.981 0.062 ty
-0.704 0.087 0.704 tz

0 0 0 1

where the vector would be (tx,ty,tz) in column vector format.

Once you've done that, you can apply the resulting matrix to your object’s position
vector, and move it through space and rotate it around 3 axes, all in one step! Go
ahead, grab a pencil and some paper, and give it a try. Meet you in the next section
when you're done.

Applied Techniques Using TorqueScript

Now is the time to get down to brass tacks. After all that fooling around with manu-
ally manipulating vectors and matrices, what really matters to us in this book is how
to actually perform transformations using vector or matrix concepts using
TorqueScript. Fortunately, TorqueScript has built-in functions to take all of the
drudgework out of this stuff. But then, I'm thinking you’ve probably already deduced
that.

Well, let’s see how we would add vectors in Torque. Remember nose-to-tail and all
that? Summing the values in the row as we went along? Well no more of that!

Nope, because now we have our handy new VectorAdd function.

tresultant = VectorAdd("2 -4 2", "-5 9 -2");

Now that was easy. Most of our vector and matrix operations won’t be that easy, but
they will be pretty close!

Subtracting vectors is about the same:

tresultant = VectorSub("2 -4 2", "-5 9 -2");

Then there’s finding the length of a vector:

tresultant = vectorlen(%vector);

87

88

Chapter 3 = Vectors and Matrices

We're on a roll now! Don’t forget about normalizing a vector to get the unit vector:

funitvec = vectorNormalize("5 5 12");

I can do this stuff with both the keyboard and the mouse tied behind my back! Scaling
vectors:

tunitvec = vectorScale("2 -7 3", 15);

You will find descriptions, syntax, and usage information for these and other vector
and matrix functions in Appendix A.

A Moving Program

Let’s examine some code that moves an object around the game world. We're going
to create a script module and add some code to an existing script module, so you'll
need to use a programming/text editor. If you don’t have one, the shareware version
of UltraEdit-32 using the installer in the uedit-32 zip file can be found on the com-
panion CD in the \A3D\TOOLS\UltraEdit-32 folder.

Warping Your Player Character

Let us say we want to change the position of our player character (or avatar—they
are interchangeable) by a certain amount, in a certain direction, instantaneously. This
is often called warping, a term that comes from some obscure science-fiction televi-
sion program.

This could perhaps be part of some trap or puzzle that the player has to navigate him-
self through, for example. If the player steps incorrectly, he might find himself far-
ther back down a tunnel whence he came. Or maybe pushed out over 50 feet of water.
Or wherever.

What we will do is create a function that will move the avatar 50 world units in what-
ever direction the avatar is facing, whenever we press the j key (I would have used
“w” for warp, but it was already taken by the default key binding set up). The algo-
rithm we will use to do this is as follows:

1. Get the current eye transform of the avatar. This yields a unit vector in a
string that points in the direction the avatar is looking.

2. Scale the unit vector of the eye transform to have the length of the warp we
want—in this case, 100 world units. Call this the warp vector.

Applied Techniques Using TorqueScript

3. Add the warp vector to the current position vector of the avatar to get the
new position coordinates.

4. Get the current transform of the avatar. This gives us both the avatar position
and avatar orientation information in a single string.

5. Extract the orientation information from the current transform and append
it to our new position information.

6. Set the transform of the avatar to the new position and old orientation infor-
mation.

Now that seems like a lot of work, but it really isn’t. The actual code will be contained
in a function called Warp1, as you will see shortly.

In order to do this, we have to execute the code on the server side, because in Torque
the server controls all player avatar motion and status, whether it’s a single- or multi-
player game. To help us easily test the code, we will create a key binding for the client
that will call the code on the server-side, basically telling the server to execute the
warp maneuver.

Step One

Create a new file called myServerScripts.cs, in the folder C:\A3D\demo\server\scripts
and add the following code:

function serverCmdWarpl(%client)
{
echo ("We be warpin'!"); // a little feedback for the console log
%avatar = #client.player; // la
%eyeVector = %avatar.getEyeVector(); // 1b
#warpVector = vectorScale(%eyeVector,50); // 2
%currentPos = %avatar.getPosition(); // 3a
#newPos = vectorAdd(%currentPos,¥warpVector); // 3b
%currentTrans = ¥avatar.getTransform(); // 4
%orientation = getWords(%currentTrans, 3);//5a(get words 3,4,5,6 from string)
#newtransform = %newPos SPC %orientation; // 5b - SPC is the same as @ " " @
tavatar.setTransform(%newTransform); // 6
}

Save your work. Note that the numbers in the comments at the end of the lines refer
to the appropriate step in the algorithm. [won’t be putting statement numbers in
comments like this for all of the code in the book. I'm just trying to be nice here. (I
know, I know: “don’t be nice, just be yourself,” they’re always telling me that.)

89

90

Chapter 3 = Vectors and Matrices

Step Two

Next, open the file C:\A3D\demo\server\scripts\game.cs and locate the function
onServerCreated. At the end of the function, after the line that says

exec("./car.cs");

and before the line that says

/1 Keep track of when the game started
Add in this code:

// Book Scripts
exec("./myServerScripts.cs");

Save your work.

Take note of this: For any future code modules you add that will execute on the server,
you should put your module in the C:\A3D\demo\server\scripts\ folder, and then add
the module’s name in C:\A3D\demo\server\scripts\game.cs in the same way as I
showed you here for myServerScripts.cs. Put them in the same place, after the //Book
Scripts comment.

The code in Step Two does this: When the server is created, the script module will be
executed, loading its functions and variables (if any) into memory. Also, any code in
the script module that is in-line, or not part of a function, datablock, or object defi-
nition will be executed immediately during the load process, as soon as the script exec-
utive encounters it.

Step Three

Okay, now we have to create our key binding. Open the file C:\A3D\demo\client\con-
fig.cs and go to the end of the file, after everything else. Add the following line of
code:

moveMap.bindCmd(keyboard,"j", "commandToServer(\'WarpI\');", "");

Note
You may have noticed that in the key binding

wenow NG llu},

moveMap.bindCmd(keyboard, “}", “commandToServer(\'Warp1\');", *");

the Warpl function is surrounded by single quotes, each of which has a backslash in front of
it. The backslash serves as an escape character. The escape character is used because the sin-
gle quotes appear inside a pair of double quotes. The single quotes are necessary because the
function name needs to be passed to commandToServer as a tagged string (see Chapter 2).

Applied Techniques Using TorqueScript

You do not need'to use the double quotes in the binding call, and if you don't, then you don't
need to use the backslashes either. However, this is the standard way to do this sort of thing
in TorqueScript. In fact, when you exit the demo, the config.cs file is automatically saved back
to disk by Torque, and when it is, it will be with the double quotes, and with the backslash-
escaped single quotes. So you may as well learn how to do it yourself. Couldn't hurt!

There are several other vector-related functions available to the standard Player object.
You can use the %objectID.dump method to get a list of them and other Player meth-
ods. Table 3.2 shows a list of vector-related methods:

Table 3.2 Vector-Related Player Methods
Method Description

getEyePoint Returns the position of the avatar's eye in a string with three words.

getEyeTransform Returns the position of the avatar's eye and its rotation vector in a string
with three words for the position followed by four words for the rotation.

getEyeVector Returns the rotation unit vector of the avatar’s eye in a string with three
words.

getForwardVector Returns the unit vector of the avatar's eye in a string with three words, with
the Z-axis set to 0.

getMuzzlePoint Returns the position of the specified mounted weapon's muzzle in a string
with three words.

getMuzzleVector Returns the rotation unit vector of the specified mounted weapon's muzzle
in a string with three words.

getPosition Returns the position of the avatar in a string with three words.

getTransform Returns the position of the avatar and its rotation vector in a string with
three words for the position followed by four words for the rotation.

setTransform Sets the position of the avatar and its rotation using a string with three

words for the position followed by four words for the rotation.

Note

You'll notice that the functions that return a transform, return a seven-word string. The first
three words of the string are the XYZ position coordinates. The last four words describe what
is often called an angular axis vector or an angled vector. The first three words of the angled
vector are a unit vector that points in a particular direction. The final word is a scalar value
that specifies, in radians, the rotation around the axis indicated by the unit vector.

91

92

Chapter 3 = Vectors and Matrices

Testing the Warp

Once you have edited the appropriate files, you can test the code by running the demo.
Launch \A3D\demo.exe, and click on the splash screen to get to the main menu to
make the splash screen go away faster. If you leave it be, it will eventually disappear
on its own after a time-out. In the main menu, click on the button near the center
that says “Example: FPS Multiplayer”. On the next screen, make sure the “Create
Server” box is checked, then click on the right-facing arrow button in the bottom left
part of the screen.

Once the demo game loads, and your player character spawns in, go run around and
shoot things with your exploding crossbow until you've had your fill. Table 3.3 shows
the default movement control keys that you can use. If you want to change them to
suit yourself, press Ctrl+O (that’s an “0”, as in the first letter of “options”), and then
click on the Control tab. To change a key binding, find the movement or action you
want in the scrollable list in the Control tab, double-click on it, and then type the key
that you want to bind to that action or movement.

Table 3.3 Torque Game Engine Demo Control Keys

Key Description

w Run forward

a Run backward

S Run (strafe) left

d Run (strafe) right

spacebar Jump

z Free look (hold key and move mouse)
Tab Toggle player point of view

Escape Quit game

Tilde Open console

Once you are through being a tourist, point your avatar in a safe direction—that
would be one where you are not looking into or up a hill, and then press the j key.
You should jump forward 30 world units. You can go warping all around the world

like this.

Remember the procedure you followed to get into the game so that in the future,
when you are directed to “run the demo game,” you'll know what’s expected, and 1
won’t have to type so much!

Applied Techniques Using TorqueScript

Rotate It

One of the more common capabilities people like to add to their games, or to spe-
cific creatures or items in their games, is the ability to rotate and track a player. What
we'll do here as our sample rotation program is make an arbitrary object in a map
rotate to face your position. Like the warp code, we’ll implement it using a key bind-
ing. That way you can maneuver your avatar around the map, and then hit the rotate
key (we’ll use k as the key) to make the object turn to face you.

Instead of using some mundane thing like a radar dish or antenna, we're gonna make
a whole multi-story building track you! How’s that for creepy? The building we will
use is the “Great Hall,” shown in Figure 3.16.

Figure 3.16 The Great Hall.

Here’s the approach we will take:

1. Scan through the Building SimGroup looking for an interior datablock that
has the Great Hall’s file name in the filename property. There’s only one on
the demo map.

2. Get the avatar’s transform.
3. Get the building’s transform.

93

94

Chapter 3 = Vectors and Matrices

4. Use the avatar’s transform to modify the building’s transform to make it face
the avatar.

5. Set the new building’s transform.

So let’s get cracking.

The Code

It’s necessary for you to have completed the code in the previous section about warp-
ing the player character in order for the code in this section to work. If you haven’t
completed the warping section and successfully tested it, you should do that now
before proceeding.

Now, to get the rotation example code into the program, open the script module called
myServerScripts.cs, in the folder C:\A3D\demo\server\scripts and add the following
code:

function FindBuilding(%filename)
{
echo ("looking for building:"@%filename);
%count = Buildings.getCount();
ttarget = 0;
for(%i = 0; %i < %count; %i++)
{
#found = Buildings.getObject(%i);
echo("id: "@%i@"-"@%found.interiorfFile);
if (%found.interiorFile $= "demo/data/interiors/room/greathall.dif")
{
%target = %found;
break;

]
return %target;
)
function serverCmdRotatel(%client)
{
echo ("****¥*x* Yo he rotafin'! ***xx*x").
tavatar = #client.player; // la

#bldg = findBuilding("demo/data/interiors/room/greathall.dif");
#newtransform = daRotate(%avatar.getTransform(),%bldg);
#bldg.setTransform(%newtransform);

Applied Techniques Using TorqueScript

function DaRotate(%avatar_xform,%obj)
{
%obj_xform = %obj.getTransform();
#rotA = GetWords(%avatar_xform,3,6);
#matrixA = "0 0 0" SPC %rotA;
%rotB = "0 0 16.28"; // 6.28 = 2P1 = 360 degrees
#matrixB = "0 0 0" SPC %rotB;
gproduct = MatrixMultiply(%vl,&v2);
%transform = getWords(%obj_xform,0,2) SPC GetWords(%product,3,6);
return %transform;
]

Save your work.

Next, open the file C:\A3D\demo\client\config.cs and go to the end of the file, after
everything else. Add the following line of code:

moveMap.bindCmd(keyboard, "k", "commandToServer(\'Rotatel\"');", "");
This is the binding for the test key that will invoke the rotation code.
Now, let’s have a look at the rotation code and see how it works.

When you press the test key, the code on the client side interprets the key bind and
sends a message to the server side telling the server code to locate the server-side com-
mand called serverCmdRotatel. It is absolutely necessary to include the prefix
“serverCmd” in the function name. Any functions with this prefix will be picked up
and tracked by the server when they are encountered when their source modules are
loaded. Then when the server receives a message from the client via the commandToServer
function, it knows where to look to the find the function. A similar system using
commandToCTient and a “clientCmd” prefix works for going the other direction: invok-
ing commands on a client from the server.

When serverCndRotatel is called, it is automatically passed a handle to the calling client
as its first variable, in this case %client. It then outputs a little message to the console
just to indicate that the function was invoked. The code then extracts a handle to the
player’s avatar object from the client object.

Next, we call the function FindBuilding which scans through the mission file looking
for the only instance of the Great Hall object that has been placed in the mission file
(placed there as part of the Torque Game Engine Demo).

The FindBuilding function uses a loop to look through the Buildings SimGroup, check-
ing to see if there is a building there whose interior file (model file) has a particular

95

96

Chapter 3 = Vectors and Matrices

name. Once it finds that building, it returns the handle to that building object back
to the calling function, which so happens to be serverCmdRotatel.

The meat of the code is the function DaRotate, which receives the avatar’s transform
and the handle to the building as parameters. It uses the angled vectors of the avatar’s
transform and the building’s transform to create new rotation matrices. The two
matrices are multiplied together, and the product is used to generate the new trans-
formation matrix, which is returned to the serverCndRotatel function and then applied
to the building using its setTransform method.

Testing The Rotating Hall

Launch \A3D\demo.exe, and run the FPS Multiplayer in just the same way as you did
when testing the warping code earlier.

Once the demo game loads, and your player character has spawned in, make your
way over to water’s edge, where the Great Hall is located. Check back with Figure 3.16
if you need help with identifying the Great Hall.

Once you have it clearly in your sights, so to speak, its time for the big test. Keep your
eyes peeled.

Press “Kk".

Hah! See that? If you missed it, move your player a large amount one way or the other
around the hall, and hit “k” again. Go ahead and experiment with different values for
%rotB in the DaRotate function, and perhaps even different matrix operations to see
what the results are.

Moving Right Along

Well, we’ve looked at vectors and matrices in detail—although not exhaustively. I've
concentrated on those characteristics that have the most applicability in games, and
are likely to be used in scripted situations.

You've also seen how vectors and matrices can be used to solve typical geometric and
navigational problems.

Finally, we've used TorqueScript and some of its built-in vector and matrix methods
to manipulate objects in the game world. It is quite evident that Torque provides some
powerful tools for the script programmer.

CHAPTER 4 i |

3D USING TORQUESCRIPT

n the previous chapters, you learned some of the more esoteric TorqueScript

capabilities. Not all of them, mind you—TorqueScript is incredibly powerful and

rich with capabilities. If you are skeptical, just take a glance at Appendix A, in the
TorqueScript Reference section. There are around 60 pages of function references for
the scripting language, not counting object methods!

In this chapter we’re going to solve some fairly common game play problems using
some of the 3D manipulation and calculation features of TorqueScript—moving
doors, both the swinging and sliding kind, and map warping.

Swinging Doors

As of this writing, the Torque Game Engine (currently at version 1.3) does not have
built-in support for doors and elevators and things of that nature. This is a reflection
of its heritage as the Tribes & Tribes 2 game engine, where doors and elevators were
not part of the game play design.

This is not really an issue for us, however, since we can easily create our own doors
with Torque. There are actually several ways to do this:

1. Create our own door object, derived from a ShapeBase object, that understands
opening, closing, playing sound effects, tracking its position, locking and
unlocking, and so on. This approach requires owning a Torque license and
modifying the engine, so I won't go into it here.

97

98

Chapter 4 = 3D Using TorqueScript

2. Create a door Shape object with both an open and close animation. Invoke the
animations using a trigger, and use a small amount of TorqueScript code to
track state changes. This is a reasonable approach that doesn’t require changes
to the core engine, but it also doesn’t really exercise TorqueScript’s advanced
features very much at all.

3. Create an ordinary StaticShape door object, and use TorqueScript to rotate
and move the door through 3D world space, track its states, and trigger sound
effects. This approach is pretty funky, and lets us stretch our minds a bit with
TorqueScript, so this is the one we want to tackle.

Now when considering how we’ll tackle this task, we sit back and look at the prob-
lem. We will need a way to cause the door to open. We can do this several ways: We
could just bang into the door and trigger the opening that way, with a collision. Or
we could detect when we were near the door, and then trigger the opening. Or we
could activate the door opening by pressing a key—"operating” the door, if you will,
which is the approach we will take here.

And then there is the actual rotation. In the last chapter we looked at ways to rotate
things and move them through space using vectors and matrices. We could certainly
take that approach here as well. But whenever I'm looking at solutions to problems
or challenges, I also look at ways to optimize the solution, to create the least amount
of code. In TorqueScript, the more code you execute, the more work the computer
does, which has the potential to bog down a server in a multiplayer situation.

With that in mind, I realize that normal doors only rotate around a vertical axis. Yes,
there are hatches, and odd-angled flaps and things that rotate around non-orthogo-
nal axes, but they are much rarer than the everyday door or gate. This limited rota-
tion axis means that we don’t actually need to use rotation matrices to swing a door
open and shut. We just need to add and subtract angles. That will do just fine.

Door Resources

Having settled the question of how we intend to implement the doors, we’re going to
need a few resources. I've provided them for you in the RESOURCES folder of the
CD, under the ch4 folder name. If you want to go about creating your own resources,
this is what you’ll need to make:

= A door model, exported to DTS format for use by Torque. The door can be as
ornate as you want, but it must have at least one collision mesh that roughly
equals the size of the door itself. Do not include any animations.

Swinging Doors 99

= A door skin for your model. Make sure that when you skin your door, you use
a skin that doesn’t limit how you can place the door. It’s best if the skin is
symmetrical from left to right, and top to bottom, but failing that, make sure
that the front features properly align with the features for the back side. For
example, if a door knob appears on the right when looking at the door from
the front (see Figure 4.1), make sure that the skin on the rear is mapped so
that the rear door handle appears on the left side of the back, when looking at
the door from the back (see Figure 4.2).

Three sound effects: for opening a door, closing a door, and slamming when
the door actually shuts. You can get away with using the same effect for open-
ing and closing if you want to do that. Torque now supports the Ogg Vorbis
file format. This format is better than wav format because it makes a smaller
file, and is cross-platform as well. Whenever you can, use this format. The
audio engineering tool Audacity supports this format. See Appendix B for
pointers about where to obtain Audacity.

Figure 4.1 Door skin, front side. Figure 4.2 Door skin, back side.

100

Chapter 4 = 3D Using TorqueScript

Door Code

Oh boy, now the dreaded code dump. Well, it’s going to happen so get used to it! We
need to do a little prep-work first, creating a call to exec to load the door code mod-
ule in, create some key bindings, and other housekeeping activities first.

Step One

Open the file \A3D\demo\client\scripts\default.bind.cs and then place the following
line of code at the end of the file:

moveMap.bindCmd(keyboard, "o0", "commandToServer('Operate');", "");

Save your work. This is the key binding for the Operate function that we will be using
to open our doors. Now, in the previous chapter we also did key bindings, but we put
them in a different module (actually into config.cs). We will also do that, but I'm also
asking you to put the binding here because the config.cs file is a preferences-type file
that the user can delete. If that file is deleted, the key bindings in there will be lost.
By also putting the binding in here, we make sure that it is available if the config.cs
file has been deleted. If config.cs was deleted, Torque will rebuild it automatically the
next time it runs and it will get the info it needs from default.bind.cs.

So, without further ado, open the file \A3D\demo\client\config.cs and then place the
following line of code at the end of the file:

moveMap.bindCmd (keyboard, "o", "commandToServer('Operate');", "");
Step Two

Open \A3D\demo\server\scripts\game.cs and locate where you inserted this line in
the last chapter, in the function onServerCreated:

exec("./myServerScripts.cs");

and add this line after it:

exec("./doors.cs");
This loads our door control script into memory when the server is created.
Step Three

Now let’s copy our resources into the right place. Create the folder \A3D\demo\data
\shapes\doors on your hard drive, and then copy the files door.dts and door.png from
the \A3D\RESOURCES\ch4 folder into \A3D\demo\data\shapes\doors.

Swinging Doors 101

Next, copy from \A3D\RESOURCES\ch4 the files doorslam.ogg, doorslide.ogg, door-
swingclosed.ogg, doorswingopen.ogg, and doorthud.ogg to the doors folder
\A3D\demo\data\sound. Again, if the folder does not already exist, create it.

Step Four

Now to add the actual door control code. Type in the following contents, and then

save as \A3D\demo\server\scripts\doors.cs.

$DOORS : ;: RADIANS_PER_DEGREE = 0.017444;

$DOORS: :XY_UNIT_VECTORS = "0 0";

$DOORS : :PLAYER_REACH = 4.5;

$DOORS: : OPEN_INCREMENT = 0.02;

$DOORS: :CLOSE_INCREMENT = 0.04;

$DOORS : ;OPEN_TIMER = 20;

$DOORS : :CLOSE_TIMER = 10;

$DOORS : :HOLD_TIMER = 2000;

$D0O0RS: :MAX_ANGLE = 90; // degrees

$D00RS: :MAX_SLIDE = 5; // meters (for sliding doors)

datablock AudioProfile(doorStartOpenSwingSnd)
{

fileName = "~/data/sound/doors/doorStartOpenSwing.ogg";

description = AudioClose3d;
preload = true;

datablock AudioProfile(doorSwingClosedSnd)

{
fileName = "~/data/sound/doors/doorswingclosed.ogg";
description = AudioClose3d;
preload = true;

)i

datablock AudioProfile(doorSlamSnd)

{
fileName = "~/data/sound/doors/doorslam.ogg";
description = AudioClose3d;
preload = true;

102

Chapter 4 = 3D Using TorqueScript

datablock StaticShapeData(ADoor)
{

category = "Doors";

shapeFile = "~/data/shapes/doors/door.dts";
)i

function ADoor::0nAdd(%theDatablock, %whichDoor)
{
if(!%whichDoor.doorOpenFlag)
#whichDoor.doorOpenFlag = false;
if(!%whichDoor.rotationDirection)
#whichDoor.rotationDirection = 1;
if(!%whichDoor.maxOpenAngle)
#whichDoor.maxOpenAngle = $DOORS: :MAX_ANGLE;

#whichDoor.currentRotation = 0;
#whichDoor.originalRotation = 0;
#whichDoor.partialTransform = "";

function serverCmdOperate(%client)
{
tplayer = %#client.player;
beye = %player.getEyeVector();
#vec = vectorScale(%eye, $DOORS::PLAYER_REACH);
%start = %player.getEyeTransform();
%end = VectorAdd(%start,%vec);
#found = ContainerRayCast (¥start, %end, $TypeMasks::StaticObjectType, %#player);
if(%found)
#found.getDataBlock().Operate(%found);

function ADoor::Operate(%theDatablock, #%whichDoor)

{
if (%whichDoor.doorOpenFlag == false)
{
#theDatablock.StartOpenSwing(#whichDoor);
}

Swinging Doors 103

function ADoor::StartOpenSwing(%theDatablock, #whichDoor)
{
#whichDoor.doorOpenFlag=true;
#whichDoor.currentRotation = 0;
#whichDoor.originalRotation = getword(%whichDoor.GetTransform(),6);
%z_unit_vector = getword(%whichDoor.GetTransform(),5);
if (%z_unit_vector == 0)
$z_unit_vector = "1";
#whichDoor.partialTransform = getwords(%whichDoor.GetTransform(),0,2) SPC
$DOORS : : XY_UNIT_VECTORS SPC %z_unit_vector;
#whichDoor.openSnd = %whichDoor.playAudio(0,doorStartOpenSwingSnd);
%theDatablock.IncrementSwing(%whichDoor);

function ADoor::IncrementSwing(%theDatablock, %whichDoor)
{
if (#whichDoor.currentRotation <
(%whichDoor.maxOpenAngle*$DOORS: : RADIANS_PER_DEGREE))

#whichDoor.currentRotation += ($DOORS::0PEN_INCREMENT *
%whichDoor.rotationDirection);
#newrot = %whichDoor.originalRotation + %whichDoor.currentRotation;
#whichDoor.settransform(®whichDoor.partialTransform SPC %newrot);
%theDatablock.schedule($DOORS: :OPEN_TIMER, "IncrementSwing", %whichDoor);
}
else
{
ttheDatablock.schedule($D00RS: :HOLD_TIMER,"StartCloseSwing",%whichDoor);
}

function ADoor::StartCloseSwing(%theDatablock, %whichDoor)
{
#whichDoor.stopAudio(openSnd) ;
%whichDoor.closeSnd = %whichDoor.playAudio(0,doorSwingClosedSnd);
%theDatablock.schedule($DOORS: :CLOSE_TIMER, "DecrementSwing", %whichDoor);
)

104

Chapter 4 = 3D Using TorqueScript

function ADoor::DecrementSwing(%theDatablock, %whichDoor)
{
if (#whichDoor.currentRotation > 0)
{
#whichDoor.currentRotation -= ($DOORS::CLOSE_INCREMENT *
#whichDoor.rotationDirection);
#newrot = %whichDoor.originalRotation + %whichDoor.currentRotation;
#whichDoor.settransform(%whichDoor.partialTransform SPC %newrot);
#theDatablock.schedule($DOORS: :CLOSE_TIMER, "DecrementSwing”, %whichDoor);
}
else
{
#whichDoor.doorOpenFlag=false;
#whichDoor.settransform(&whichDoor.partialTransform SPC
#whichDoor.originalRotation);
#whichDoor.stopAudio(closeSnd);
#whichDoor.slamSnd = %whichDoor.playAudio(0,doorSlamSnd);
#whichDoor.currentRotation = 0;
gwhichDoor.dump();

}

Okay, let’s dissect this puppy. At the very beginning of the file are a whole whack of
variable definitions that start with $D0ORS: :. Now, these really are variables—global
ones, but I've used them here more in the spirit of constants, since I do not intend
(cross my heart) to actually change them while running the program. So they are de
facto constants, or perhaps pseudo-constants, instead of mere variables. This is a fairly
important point—Torque doesn’t have any way to specify constants, but there is a
convention that goes back to the early days of C language that constants (sometimes
called macros or #definesin C/C++) are defined with all caps and underscores as word
dividers. So I use that same convention here, and it serves as a reminder to me that [
don’t want to fiddle with them, although I can use them wherever I need their val-
ues. Another thing is that they are defined with a namespace prefix, the DO0R: : part.
This isn’t entirely necessary, but helps me keep things organized. In other places, at
other times, this would have been called a facility code.

Note

This source code walkthrough and discussion is quite detailed. As the book progresses, | will
provide less and less detail. | expect that you will grow more capable at understanding the
code you read as you progress, so | can eventually dispense with a large part of the code
descriptions.

Swinging Doors

Anyway, these constants are used to hold values that are used in the code, and by using
the value this way, we get something meaningful rather than just some number in the
middle of program code. It lends to code readability, which helps reduce bugs.

After the constants, there is a set of datablock definitions for our sound effects. There
is nothing particularly special here, but note that I've ensured that the datablock
names are meaningful, and closely match the actual filenames of the wave files—this
isn’'t a requirement, but it helps when you are trying to keep track of things. The pre-
load property for each is set to true to ensure that the sound effect data is loaded into
memory before Torque tries to play the sound effect. This will minimize any delay
between when the script activates the sound effect and when you actually start to hear
it on the client.

After the audio stuff, there is a StaticShapeData datablock named ADoor. Inside it are
two properties. First is the category which tells the Torque Mission Editor the cate-
gory under which this object should appear in the Editor Creator, so that the level
builder can find the object in order to place it in the world. And then there is the
shapeFile property, indicating the path to the actual model of the shape, relative to
the root main folder of the game (that would be the folder where the game exe-
cutable—demo.exe—resides).

Next we have the first datablock method, ADoor::0nAdd. This method is called when
an instance of a door is added to the mission. This can happen if the door is created
dynamically while the game is running, or at load time when the mission is created,
if a door that uses this datablock is inserted in the mission’s world. The latter is the
method we will be using. I'll show you how to add doors to the mission later on in
this section. In the meantime, for an example of what an actual door object defini-
tion looks like, as found in the mission file for the FPS Multiplayer example after a
door was inserted into the mission, look at this:

new StaticShape() {
position = "187.604 -39.4717 198.801";
rotation = "1 00 0";
scale="111";
dataBlock = "ADoor"
rotationDirection = "1";
max0OpenAngle = "90";

105

106

Chapter 4 = 3D Using TorqueScript

The door object is of the StaticShape class. The first three lines show the transforma-
tion information for the object. Then comes the datablock property that points, by
name, to the datablock that we just talked about a minute ago: ADoor. So what we have
here is an unnamed instance of a StaticShape that uses the ADoor datablock to define
its behavior and properties. Now like any StaticShape, it has its own methods and
properties as well, which are generally applicable to any StaticShape. By using the ADoor
datablock, we can now provide specialized behavior and properties for this shape—
and that’s what this module doors.cs, is all about. So whenever you see me talk about
an instance of a door, or the door object, one of the StaticShapes that was inserted
into the mission using the above StaticShape code snippet is what I'm talking about.

Now there are two basic activities in ADoor: : OnAdd. First, we are initializing some user-
definable dynamicvariables, as properties of an instance of a door. The user can spec-
ify these variables in the mission file by inserting the variables and their values with
the Mission Editor, or by editing the mission file manually with a text editor. The
series of if statements you see in the first part of this function are checking to see if
the user already has defined values for these variables. If he has not, then an initial
value is assigned to the variable to ensure that they begin in a sensible and known
state. These are conditional initializations.

After the conditionals, there are a few more initialization statements, but these are
subtly different. These are variables that are used during the operation of the doors,
just like the earlier conditionals. But we want these variables to always start with spe-
cific values, so they are not conditional. If the user were to specify values for these
variables in the mission file or Mission Editor, whatever settings he created would be
wiped out by these statements at the time the object is inserted into the world, because
we want to start with these values, and no others.

Turn your attention to the second argument to the ADoor: : OnAdd function, %whichdoor.
This is the handle to the specific instance of a door that is created, the StaticShape
door I told you about. If you look at all of the variable assignment statements, you
will notice that it is the property variables of #whichdoor that are being tested or ini-
tialized. Now look back a bit to the StaticShape declaration from the mission file I
showed you. Notice that the indented properties in the StaticShape declaration are
some of the same ones we are testing for in the ADoor: :0nAdd? Those are examples of
the user creating his own specifications for those variable properties.

Swinging Doors

Torque Terminology Time!

Like any complex creation of mankind, Torque has its own quirks and foibles. One of these is
the nomenclature used by the original GarageGames programmers who created the demo
scripts.

First of all, Torque provides a certain handy object reference capability in an object’s meth-
ods that is similar to the use of the ¢his keyword in C++, but not exactly the same. In Torque,
if you have a object method like AnObject::DoSomething, when you call the method you would
call it like this:

%objectHandle.DoSomething();
Your method’s declaration would need to look something like this:

AnObject: :DoSomething(%theDatablock)
{
|

This is because Torque automatically passes the object’s handle into the method as the first
argument. You need to have a variable there to grab that argument, even if you don't intend
to use it. You can use any valid identifier that you like, but by convention established by the
GarageGames guys, normally 4this is used as the first argument’s identifier. There are some
exceptions: If the object is GameConnection, then the first argument is usually called %c1ient.

Now be patient with me, I'm slowly working my way to the punch line here.

As you have seen in earlier chapters, Torque uses a special kind of object or data structure
called a datablock. In some ways, datablocks are treated much like regular objects—they
have properties and methods.

Now here comes the rub. This gets a little convoluted, so hang on tight. Here we go!

When we normally create an object method, the first argument to that method is always the
handle of its owning object. With any given datablock object, there is only ever one instance
of that datablock. So every time a reference to that datablock shows up somewhere in the
code, it's always the same one, with the same handle. And yet, by convention, the identifier
%this is used to specify the first argument into any method of that datablock. Can you see it?
It can be somewhat subtle: Using %this implies that there could be more than one version of
this datablock, and that you need the handle %this to tell them apart. But that just isn't so.

It would be the case for any other category of object, but not for datablocks.

Why does this matter? Well, it matters because the identifier usage can quickly lead to con-
fusion, especially when you realize that datablocks are often paired up with related objects

107

108 Chapter 4 = 3D Using TorqueScript

with similar names that do have multiple instances, sometimes even maybe hundreds of
instances running (or standing, crawling, falling, or bouncing) around the game world bump-
ing into each other.

One often gets a situation where there is a Bozo class of objects, and a BozoData datablock
that defines invariant properties and methods that were created for use by the Bozo class of
objects. For example, you end up with a situation where you can have this object method:

Function Bozo::BeepNose(%this ,%obj)
{
]

and this datablock method

function BozoData::BeepNose(%this ,%obj)
{
)

They look almost the same. But in the first case, the 3this refers to one instance of many pos-
sible bozos, and in the second case, the %this refers to the only instance of BozoData that can
possibly exist.

But wait, there's more!

Usually what happens is that in the first case, the %obj argument is the handle of some object
that has just interacted with that particular instance of the Bozo class, like maybe another
player or a piano that has fallen on the Bozo, while in the second case, the %obj argument is
usually the instance of the Bozo class that wants to use the datablock’s method!

Here's what I've decided to do to help retain what remains of my dignity: When dealing with
datablock methods, | call the first argument %theDatablock (and not %this). And then—
because as | said just a moment ago, the second argument to a datablock method is usually
a handle to an instance of the object that uses the datablock—I call the second argument a
descriptive name like this:

function BozoData::BeepNose(%theDatablock,¥theBozo)
{
)

Using “the” as the prefix in the %theBozo identifier takes advantage of English language
semantic rules, telling everyone who is paying attention that the second argument refers to
a specific (but currently anonymous) Bozo.

Swinging Doors

So now there is no ambiguity inside the datablock method. The identifiers tell me what I'm
dealing with in a much clearer way than before.

And finally, all other categories of objects are treated the same way they always were.

This long sidebar was necessary to explain what might seem to be unusual naming choices
in the code I've presented to you for providing opening doors. The same convention will be
used at times throughout the rest of this book, but if used, it will only be for new book code—
| will not be diving into the existing stock Torque demo scripts to change them to match.

After examining the ADoor: :0nAdd method, we now get to where the action starts, with
serverCmdOperate. You need to know that this code module is executed on the server-
side of things. As you can deduce, when you press the operate key (“0”), you are doing
that on the client side. That key was bound in the default.bind.cs module, you might
recall. In that module we used the commandToServer.. direct messaging construct to send
a command from the client to the server, telling the server to execute the function
Operate when the bound key was pressed. The server receives that message (and all
messages like that) and looks for the function name appended to the end of the string
serverCnd, so in this instance, it looks for serverCmdOperate, and passes the client han-
dle and any transmitted arguments (there aren’t any in this case).

What serverCndOperate is going to do is look to see if anything is within reach of the
player in the direction that he is looking. If so, and if it is a door, then we’ll invoke
the door’s own Operate method on it.

The first thing that serverCmdOperate does is extract the player handle from the client
handle. Next, we grab the vector that tells us the direction the player’s eye is looking.
And yes, you are right—3%eye is a unit vector. We take advantage of the fact, and use
the reach distance to scale the eye vector, since it is already pointing where we want.
So now we have a vector that tells us how far away we can reach, and in which direc-
tion to do it. We just need to know where to start our reaching from. We can find this
out by getting the transform of the eye, and then with these two values—the trans-
form and the vector—we can figure out where our reach ends (it starts at the eye
transform).

All this good data is fed into the magical ContainerRayCast function, which pops
out the handle of any doors that it finds. ContainerRayCast used the
§TypeMasks::StaticObjectType mask internally, to compare against the types of objects

109

110

Chapter 4 = 3D Using TorqueScript

it finds . If the type of the objects ContainerRayCast finds matches the specified type,
then ContainerRayCast returns the details about that object, depositing said details in
the %found variable. For a list of available type masks, see Table A.1 in Appendix A.

We've also told ContainerRayCast to ignore our own player object, by specifying %player
in the last argument. ContainerRayCast is an extremely useful function for game play
purposes. What it does is extend a line, or “ray” in the world from the starting coor-
dinates to the ending coordinates in three dimensions (see Figure 4.3). It looks for
objects that have the type that is specified in its third parameter, and considers its job
done when it has “hit” the first such object.

Figure 4.3 Casting a ray.

You can also give it the handle of any object that it should ignore. Usually this would
be your own character. In Figure 4.3, the ray being cast is quite long, maybe 30 feet
or so. In our code, we are using a 4.5 meter ray. Now I know that is quite a bit farther
than people can reach, but I chose it for gameplay reasons—Iess than that seems to
“feel” just too close. But of course, you are free to use any reach that you find suit-
able, simply by changing the $D0ORS: :PLAYER_REACH constant.

Swinging Doors

Now, if no object is found that matches the type, then %found is stuffed with a big, fat
zero. If the right kind of object (a door) is found, then off it goes into the door’s own
Operate method, dragging an argument along the handle of the found door with it.
So let’s dive right in behind it!

In Door: :Operate not much happens. This may tempt you to just turn around and head
right back out, call a taxi, pass the driver a tenner, and tell him to take you to where
the action is. Well, maybe you should take another look. It’s true that not much hap-
pens in the function, but it’s an important not much.

First, you check the state of the door to see if it’s closed, because if it isn’t, that means
the door is already being operated. So leave it alone. The doorOpenFiag is the variable
used during the game to track whether a door is open or closed. At startup, we always
want the door set to closed, so doorOpenFlag is initialized to false, meaning that the
door is not open, as you saw back in the discussion about ADoor: :0nAdd. If we don’t
watch out for the door state, we can cause some pretty funky things to happen to the
door that we want to avoid.

If the door is closed, then it’s time to get that door swinging, by calling the door’s
StartOpenSwing method. Notice that because this is a method of ADoor and therefore
part of the ADoor namespace, when it is invoked the object’s handle is automatically
inserted as the first argument in the argument list. Then inside the method we extract
it with the variable #theDatablock. See the Torque Terminology Sidebar for more expo-
sition on this subject.

ADoor: :StartOpenSwing is mostly more preparation activity. The very first thing it does
is set the door’s state flag in order to prevent you or someone else from trying to open
the door while it is swinging open (or while it is standing open or swinging closed).
Then we initialize our rotation tracking variable, whichDoor.currentRotation. No mat-
ter which way a door is facing when it is closed, we consider the rotation to be zero.

Then we extract the current transform rotation, which is the seventh (therefore
indexed by the number 6 when zero-based indexing is used, as it is in Torque) value
in the transform string returned from %whichDoor.GetTransform(). We need this value
because we are going to be changing it later in another method. Since it is saved as a
property of whichever door %whichDoor is pointing to, we can access the value from
any method that knows about %whichDoor.

Next, we extract the first three values in the transform string, saving them in the
#whichDoor.partialTransform property for later use. Notice that we only extracted the
position information and not the three normal angles that follow (and that precede

AN

112

Chapter 4 = 3D Using TorqueScript

the rotation value). This is because when you place a StaticShape object in the game
world using the Mission Editor, by default it assigns the values “1 0 0” for the nor-
mals, which would mean that the rotation (which would be 0 at the time of place-
ment) will be applied to a rotation around the X-axis. But this is a door we are dealing
with. It only needs to rotate around the Z-axis. So we toss away the default values
from the time of placement, and substitute our values: “0 0”. But before we toss the
three away, we extract the Z-axis rotation value by itself, and then check it, just in case
it really was set when the door was placed in the world. If the value is zero, then we
will substitute in a 1. Otherwise we will use the setting it had (1 or -1). This will cause
the rotation to occur around the axis we want.

Next, we start the audio sound effect playing on channel 0, using the doorSwingOpenSnd
datablock you saw at the top of the code module. The sound effect is just played once,
until it stops. We save a handle to the sound being played as a dynamic property of
the door instance in openSnd. The handle will be valid as long as the sound is being
played. This means that we can do things to the actively playing sound at a later time,
like stop it before it runs to completion. Another approach that we could take to gen-
erate sound effects would be to use an AudioEmitter, place it in the world at a loca-
tion of our own choosing, start the sound, and then later delete the emitter when the
door stops opening.

Anyway, we finally call #theDatablock.IncrementSwing, again passing on the pointer to
the actual door instance we’re dealing with.

The next method we will examine is that very same %theDatablock. IncrementSwing,
which is the meat and potatoes of the door control code.

The very first thing we do in ADoor: : IncrementSwing is check our rotation tracking vari-
able and see if we’ve exceeded the maximum angle that we will allow the door to open.
Since this is our first visit to this bit of code, it’s doubtful that the rotation has gone
far enough. However, we will be returning here many times over the course of the
door opening activity.

Every time through this function we increment the rotation value. By design, our
rotation always increments positively. You can see currentRotation being incremented
by the $DOORS: : OPEN_INCREMENT constant, which happens to be 0.02 radians, as defined
at the top of the doors.cs module. For faster opening, use a larger number. The
rotationDirection variable is set to either 1 or -1, indicating opposite directions. The
positive is for door opening, and the negative is for closing.

Swinging Doors

The sum of the original rotation angle and the new one we’ve just calculated is our
new total rotation value, saved in the local variable #newrot.

So now that we’ve computed how far the door has rotated, we need to apply that
information to the door’s transform. We had saved the door’s position information
from its transform in partialTransform, so now we can put the whole transform back
together again, using the setTransform method. Note that the partial transform and
the new rotation are concatenated together using the SPC macro. That’s the same as

oW oG

using “ “@”“ for the string concatenation.

As soon as we set the new transform, the door will rotate a tiny bit to the new posi-
tion almost instantly. So now, all we have to do is come back and do it again, and
again, and again until the door is all the way open. We do that by using the schedule
method of the datablock. We give schedule a time period to wait (in milliseconds),
the name of a function to call, and the values of any arguments the function needs,
and it will go off and count off the milliseconds until the magic moment, and then
it will call the function it was told to call, and pass in the arguments it was given.

In our case, we schedule the very method we are in for a wake-up call in 20 millisec-
onds, and tell it to increment the very same door, all over again.

When we regain consciousness, we find ourselves back in IncrementSwing, where we
dutifully perform the calculation, rotate the door a teensy bit, then schedule another
wake-up call.

It’s like déja vu all over again! Eventually though, the re-iteration will end when the
rotation angle exceeds (by a tiny amount) the maximum angle. At that point, instead
of incrementing, we end up in the else portion of the code.

In the el1se block, we now schedule a wake-up call to close the door, but we do it with
a longer delay, specified by $D00RS: :HOLD_TIMER, which has been set to 2000 millisec-
onds (two seconds) at the top of the module. This gives players time to get through
the doorway. You can set this to anything that suits you. Eventually, the timer expires,
and the StartCloseSwing method is called.

ADoor: : StartCloseSwing exists for two purposes: to give us a place to stop the door open-
ing sound effect, and to allow us to play the closing sound effect without having it
get played every time through the closing loop. So we turn on the sound, and then
reschedule a wake-up for ADoor: :DecrementSwing in 10 milliseconds.

ADoor: :DecrementSwing is almost identical to ADoor: : IncrementSwing in the repeating por-
tion, except that it decrements the rotation value.

113

114

Chapter 4 = 3D Using TorqueScript

The one big difference is that ADoor: :DecrementSwing does more things when the door
finally closes. First it sets the doorOpenFlag to show that the door is closed. It reassem-
bles the starting transform for the door, and repositions the door exactly as it was
before it started opening up. Then it stops the closing sound effect, and plays a final
“slamming shut” sound effect. And finally, it resets the rotation counter back to 0.

Well, that’s done. There’s a lot of stuff happening in there. Next time someone hollers
at you: CLOSE THAT DOOR! You can respond with “Do you know how much work
that really is?” Unless, of course, it’s your mother doing the hollering. Never talk back
to your mother!

Now if you want, you can take the code I gave you in doors.cs and expand it to allow
for swing doors around axes that have orientations other than purely vertical. A quick
trip back to Chapter 3 and a review of rotation matrices should do the trick. You could
also do it with vector math, or a combination of both.

Testing the Swinging Door

After all that preparation and code gazing, let’s set up a door and test it. Run the FPS
Multiplayer demo in the A3D folder. Once you've spawned into the sample mission,
run over to the big hall/temple building and plant yourself somewhere in the entrance
area. Once there, you can press F8 to switch to fly mode (or camera mode) and fly
around the scene divorced from your avatar.

You should position yourself something like five or ten “feet” (estimate by eye) above
the ground in camera mode and set your camera speed to the slowest.

Tip

You can adjust the flying speed of the camera mode by opening the Mission Editor (press the
F11 key), and then pressing Shift+1 to get the slowest camera speed, or pressing Shift+7 for
the highest camera speed, or any of the numbers between 1 and 7. The lower the number, the
slower the camera moves. Use Shift+7, or high speed, to move about the map quickly. Once
your camera is roughly positioned, you should switch to a slow speed, like Shift+1 to aid in
object placement.

Once you've found a suitable place to plant your door, like in the entrance, ensure
you stay in fly mode, and then press F11 to invoke the Mission Editor. Once the Editor
is up, press F4 to invoke the Creator mode. On the lower right side (as shown in Figure
4.4), you will see the tree view. Expand the Shapes list by clicking on the plus sign,
then expand Doors. When you click on ADoor, it will be pasted into the game world
at the point on the ground where the center of your screen view is pointing.

Swinging Doors

Fie Edt Camera Workd Vindow

Bl

Figure 4.4 Placing a door.

If you are standing in the entrance like Figure 4.4 shows, your door will be inserted
below the floor level, since that’s where ground level is. When this happens, just move
your cursor over the blue line that sticks up from the object, with the Z label on it.
When you hover your mouse hand over it, it will become highlighted. Press the mouse
button down, then drag the door up to the floor’s level by pulling on that Z.

You can position the door to your satisfaction by dragging it by one of the handles.
You must make sure you are in fly mode, otherwise you will not be able to grab the
axis handles. You can rotate the door around the Z-axis by holding down the Alt key
while dragging the Z handle. Try it out for yourself now to see how it works.

Once the door is positioned satisfactorily, press F11 to leave the Editor. Then Alt+C
to switch back to player-control mode. Now walk up to the door, fairly close (judging
by eye), then press the “0” key. The door will swing open. After standing open for about
two seconds, it will swing closed again. If it doesn’t open, move closer and try again.
If you get right up against the door and it still won’t open, press ~ (that’s the tilde key)
to open the console interface. Scroll upwards looking at old messages in the console
looking for messages in red. Not all red text is an error, but if an error occurred, it will
be in red text, and will probably have a pair of hash-marks (##) surrounding the spot

115

116 Chapter 4 = 3D Using TorqueScript

where the error was detected. Use this and the console log file to debug your program.
Also, refer back to Chapter 2 for some pointers on how to go about resolving your
code problem.

Sliding Doors

More doors!

This time, let’s take on the famous sliding door of TV science fiction or Doom fame.
We won’t go into as much detail as with the swinging door code. We'll use some vec-
tor and matrix math, which you looked at in the last chapter. We’ll make a door that
slides up into the ceiling.

Door Resources

We're going to use the same resources that we did with the swinging doors. You'll
probably want to change at least the texture and the sound effects to more appropri-
ately match what a sliding door should look like, if you use this for your own game.
Most sliding doors that I've seen don’t have hinges, for example.

Door Code

What we'll do is apply our changes to the existing door.cs module. But rather than
spend pages and pages telling you to change this line, add that one, and remove
another one, I'll give you the new code with the sliding door integrated with the swing
door, and I'll use a marker on the new lines like this:

/ ;‘ kkkpoykkk

Also, these next two markers will indicate that there is all new code between them.
This one indicates the start of a new block of code:

[/ wvy **Epew*** yyy
and this one indicates the end of the new code block:

ff AMA i**neN*** AAA

That way, you'll know what to add in, and still see it in context. For new methods, I
will include the new marker only on the line of the function’s declaration, and not
the rest of its definition. Then we will take a look at the new code, and how to use it.
To refresh your memory, the door module is located at \A3D\demo\server\
scripts\doors.cs.

$DOORS : : RADIANS_PER_DEGREE = 0.017444;
$DO0RS: : XY_UNIT_VECTORS = "0 0";
$DOORS : :PLAYER_REACH = 4.5;
$DOORS: : OPEN_INCREMENT = 0.02;

$DOORS : : CLOSE_INCREMENT = 0.04;
$DOORS: : OPEN_TIMER = 20;
$DOORS : : CLOSE_TIMER = 10;

$DOORS: :HOLD_TIMER = 2000;
$DOORS : :MAX_ANGLE = 90;

$DOORS: :MAX_SLIDE = 3.5; // ***neyr**
$DOORS: : SLIDE_STEP = 0.05; // ***newr**
$DOORS: :MODE_SWING = "swing"; // *¥**newk+*
$DOORS: :MODE_SLIDE = "slide"; // *¥*¥newk**

[}

datablock AudioProfile(doorSwingOpenSndProfile)

{
fileName = "~/data/sound/doors/doorswingopen.ogg";
description = AudioClose3d;
preload = true;

datablock AudioProfile(doorSwingClosedSndProfile)

{
fileName = "~/data/sound/doors/doorswingclosed.ogg";
description = AudioClose3d;
preload = true;

)3

datablock AudioProfile(doorSlamSndProfile)

{
fileName = "~/data/sound/doors/doorslam.ogg";
description = AudioClose3d;
preload = true;

);

datablock AudioProfile(doorSTideSndProfile) // vvv *¥kpewk** yyy
{

fileName = "~/data/sound/doors/doorslide.ogg";

description = AudioClose3d;

preload = true;
}: ;; AAA ***HEH*** AAA

Sliding Doors

117

118 Chapter 4 = 3D Using TorqueScript

datablock AudioProfile(doorThudSndProfile) // vvv ***pewk** yyy
{

fileName = "~/data/sound/doors/doorthud.ogg";

description = AudioClose3d;

preload = true;
]: ;; AAN ***HEH*** AAA

datablock StaticShapeData(ADoor)
{
category = "Doors";
shapeFile = "~/data/shapes/doors/door.dts";

function ADoor::0nAdd(%theDatablock, %whichDoor)
{
if(!%whichDoor.doorOpenFlag)
#whichDoor.doorOpenFlag = false;
if(!%whichDoor.rotationDirection)
#whichDoor.rotationDirection = 1;
if(!%whichDoor.maxOpenAngle)
#whichDoor.maxOpenAngle = $DOORS: :MAX_ANGLE;
if(!%whichDoor.maxS1ideDistance) [vvy **kpeykkk yyy
#whichDoor.maxS1ideDistance = $DOORS: :MAX_SLIDE;
if(!%whichDoor.mode)
#whichDoor.mode = $DOORS: :MODE_SWING; [AMR Rkkpaykick AAA

#whichDoor.currentRotation = 0;
#whichDoor.originalRotation = 0;
#whichDoor.partialTransform = "";

function serverCmdOperate(%client)
{
tplayer = ¥client.player;
%eye = ¥player.getEyeVector();
$vec = vectorScale(%eye, $DOORS::PLAYER_REACH);
#start = Zplayer.getEyeTransform();
%end = VectorAdd(%start,%vec);
#found = ContainerRayCast (%start, %end, $TypeMasks::StaticObjectType, %player);

Sliding Doors 119

if(%found)
%found.getDataBlock().Operate(%found);

function ADoor::0perate(%theDatablock, %whichDoor)
{
if (%whichDoor.doorOpenFlag == false)
{
switch$(%whichDoor.mode) /] wyy *x¥kpeykkk yyy
{
case $DO0ORS: :MODE_SWING:
#theDatablock.StartOpenSwing(%whichDoor);
case $D0O0RS::MODE_SLIDE:
#theDatablock.StartOpenSTide(%whichDoor);
default:
%theDatablock.StartOpenSwing(%whichDoor);
] H AAA ***Tle’d*** AAA

function ADoor::StartOpenSwing(%theDatablock, %whichDoor)
{
#whichDoor.doorOpenFlag=true;
#whichDoor.currentRotation = 0;
#whichDoor.originalRotation = getword(%whichDoor.GetTransform(),6);
%z_unit_vector = getword(%whichDoor.GetTransform(),5);
if (%z_unit_vector ==0)
tz_unit_vector = "1";
#whichDoor.partialTransform = getwords(%whichDoor.GetTransform(),0,2) SPC
$DOORS: : XY_UNIT_VECTORS SPC %z_unit_vector;
#whichDoor.openSndHandle = %whichDoor.playAudio(0,doorSwingOpenSndProfile);
#theDatablock.IncrementSwing(%whichDoor);

function ADoor::StartOpenSlide(%theDatablock, #whichDoor) // vvv ***newx** yyy
{

#whichDoor.doorOpenFlag=true;

#whichDoor.originalposition = #whichDoor.getposition();

#transform = %whichDoor.getTransform();

%rot = getWords(¥transform, 3, 6);

120 Chapter 4 = 3D Using TorqueScript

tmatrix = VectorOrthoBasis(%rot);

#whichDoor.openVector = getWords(%matrix, 6, 8);

#whichDoor.closeVector = (-1*getword(%matrix,6)) SPC (-1*getword(%matrix,7)) SPC
(-1*getword(%matrix,8));

#whichDoor.openVector=vectorscale(%whichDoor.openVector, $DOORS::SLIDE_STEP);

#whichDoor.closeVector=vectorscale(%whichDoor.closeVector, $DOORS::SLIDE_STEP);

#whichDoor.openSndHandle = %whichDoor.playAudio(0,doorS1ideSndProfile);

#theDatablock.IncrementS1ide(%whichDoor);
] ff AMA ***HEH*** AAA

function ADoor::IncrementSwing(%theDatablock, %whichDoor)
{
if (%whichDoor.currentRotation <
(%whichDoor .maxOpenAngle*$D00RS: : RADIANS_PER_DEGREE))

#whichDoor.currentRotation += ($DOORS::OPEN_INCREMENT *
#whichDoor.rotationDirection);
tnewrot = ¥whichDoor.originalRotation + %whichDoor.currentRotation;
gwhichDoor.settransform(%whichDoor.partialTransform SPC %newrot);
ttheDatablock.schedule($D00RS: :OPEN_TIMER, "IncrementSwing", %whichDoor);
}
else
{
#whichDoor.stopAudio(%whichDoor.openSndHandle);
#theDatablock.schedule($D00RS: :HOLD_TIMER,"StartCloseSwing", %whichDoor);
]
)

function ADoor::IncrementSlide(%theDatablock, %whichDoor) [/ vvv ***pew*** yyy
{
if (vectordist(%whichDoor.originalposition,swhichDoor.getposition()) <
%whichDoor.maxS1ideDistance)
{
#travel = vectoradd(#whichDoor.getposition(), %whichDoor.openVector);
#whichDoor.settransform(%travel);
ttheDatablock.schedule($DOORS: : OPEN_TIMER, " IncrementSlide", %whichDoor);
]

Sliding Doors 121

else
{
#whichDoor.stopAudio(%whichDoor.openSndHandle);
ttheDatablock.schedule($D0ORS: :HOLD_TIMER,"StartCloseSlide",%whichDoor);
}

] ;; AAMN ***HEH*** AAA

function ADoor::StartCloseSwing(%theDatablock, %whichDoor)

{
#whichDoor.closeSndHandle = %whichDoor.playAudio(0,doorSwingClosedSndProfile);
%theDatablock.schedule($DO00RS; :CLOSE_TIMER, "DecrementSwing", %whichDoor);

]

function ADoor::StartCloseSlide(%theDatablock, %whichDoor) // vvv *¥**pewk** yyy
{
#whichDoor.closeSndHandle = %whichDoor.playAudio(0,doorSTideSndProfile);
%theDatablock.schedule($DOORS: :CLOSE_TIMER, "DecrementSlide", %whichDoor);
} ;; AN ***Heﬂ*** AAA

function ADoor::DecrementSwing(%theDatablock, %whichDoor)
{
if (#whichDoor.currentRotation > 0)
{
#whichDoor.currentRotation -= ($DOORS::CLOSE_INCREMENT *
#whichDoor.rotationDirection);
#newrot = %whichDoor.originalRotation + %whichDoor.currentRotation;
#whichDoor.settransform(%whichDoor.partialTransform SPC %newrot);
#theDatablock.schedule($D00RS: :CLOSE_TIMER, "DecrementSwing”, #whichDoor);
}
else
{
#whichDoor.doorOpenFlag=false;
twhichDoor.settransform(%whichDoor.partialTransform SPC
#whichDoor.originalRotation);
#whichDoor.stopAudio(%whichDoor.closeSndHandle);
#whichDoor.playAudio(0,doorSlamSndProfile);
#whichDoor.currentRotation = 0;

122

Chapter 4 = 3D Using TorqueScript

function ADoor::DecrementSlide(%theDatablock, #whichDoor) // vvv *¥*¥pewk** yyy
{
if (vectordist(%whichDoor.originalposition, %whichDoor.getposition()) > 0)
{
%travel = vectoradd(¥whichDoor.getposition(), #whichDoor.closeVector);
#whichDoor.settransform(%travel);
#theDatablock.schedule($DOORS: : CLOSE_TIMER, "DecrementSlide", %whichDoor);
}
else
{
#whichDoor.doorOpenFlag=false;
#whichDoor.settransform(%whichDoor.originalposition);
#whichDoor.stopAudio(%whichDoor.closeSndHandle);
#whichDoor.playAudio(0,doorThudSndProfile);

) [AAA kkkpapkkk AAA

It looks very much like the swinging door code, as it should since the swinging code
is still in there. What we’ve done is added some methods and audio profiles to han-
dle the sliding doors, and modified a few existing methods to accommodate them.
And of course, there are a few more of those pseudo-constants up at the top of the
module as well.

There are only two new audio profiles, instead of three. I've chosen to use only one
sound effect for when the door is sliding, rather than different ones for opening and

3, €

closing. The “thud” sound is the slider’s version of the swinger’s “slam” sound.

You will notice that the new methods parallel the swinging door functions precisely,
but with different code. I could have inserted the new code into the original func-
tions, with a test to see if this is a swinger or a slider, but this way it is easier to man-
age the functionality. In both swingers and sliders, we start opening, then increment,
then start closing, then decrement.

As you can see from the new code listing, the new methods that you will have to add
are:

ADoor::StartOpenSlide
ADoor::IncrementS1ide
ADoor::StartCloseSlide
ADoor::DecrementS1ide

Sliding Doors

The existing method ADoor:0nAdd has an additional initialization step added to it, to
ensure that a maximum slide distance is available to limit the door movement, in case
the level builder hasn’t specified any. There’s also a default setting for the operation
mode.

And then a new switch block has been added into ADoor::0perate. This code checks
the value of the .mode property and jumps to the appropriate statement depending
on the evaluation. Note that there is a default setting, set to the slider mode, just in
case no mode value is set, or (more likely) an invalid string is assigned to the mode.
A typo could cause that.

Then, because we are chasing slider code here, we jump to the method
::StartOpenSlide. It’s quite a bit different in detail from its swinging brother, but in
general it does the same things. It sets the door’s status flag, initializes the position
tracker to the door’s starting position, grabs the transform, and computes the direc-
tion of movement for use later in the incrementing method. It also fires off the sound
effect before jumping to ::IncrementS1ide.

The real guts of the slider code are the bits in the middle of this function where we
use a matrix to obtain the two movement vectors we need: openVector and closeVector.
As you know, when the door is placed in the game world it has a transform that we
can grab, and the last four values in that transform are three unit vector axes and a
rotation value. With the swinging door, we limited it to only rotating around the Z-
axis, but with the sliding doors, we’re going to go with no limitation on the orienta-
tion of the door when at rest. This means that the door can be facing any which way.
And that means we need to be prepared to slide it any which way. So this time, we
have to use the angled rotation information the way it was meant to be used.

We grab the angled rotation information and stuff it into the local variable %rot and
then pass that into the function VectorOrthoBasis. The return value is a 3x3 matrix
that we can use to direct our motion in any direction orthogonal to the door (see
Figure 4.5) in its object space.

The matrix is returned as a 9-word string organized like this:

“wO w1 w2 w3 w4 w5 wb w7 w8” x? xi xg
return string w2 w5 w8

matrix

123

124

Chapter 4 = 3D Using TorqueScript

Back

Left h =
|:> Right

Down

Figure 4.5 The door's orthogonal directions.

The direction I have chosen to move the door when it opens is “up,” but you can mod-
ify the code to accommodate any of the other five ortho directions. The difference
will lie in which part of the matrix to use. Table 4.1 breaks this down for you.

Table 4.1 Movement Vectors

Direction Words from Return String
up 6,7,8
down 6,7,8
left 0,1,2
right 0,1,2
forward 3,45
backward 3,45

For the “up” movement, we are interested in words 6, 7, and 8 from the returned
matrix string. We take them “raw” to use as our opening vector (the vector that the
opening door follows). Then we have to negate them, or take the opposite sign,
because the closing motion is precisely opposite to the opening motion. We do this
by extracting each of the three axes individually, using the getword script function, and
then multiplying each by -1 to change their signs to the opposite of whatever sign
they started with. We can do all three operations in the same line, during the assign-

Sliding Doors

ment statement to closeVector. If you have difficulties here, you can break out the
work for each vector independently, a statement for each axis, and then stuff them
into the closeVector string afterwards.

Remember this: Although it may seem like I'm stating the obvious here, “up” and
“down” are opposites. Therefore, if you write your own code to implement down-
ward sliding doors, the opening vector for the “down” direction is the same as the
closing vector for the “up” direction.

So, after all that excitement, when ::StartOpenS1ide’s moment under the bright lights
is coming to a close, it calls ::IncrementS1ide just prior to stepping off the stage.

ADoor: :IncrementS1ide, like its spiritual brother, ADoor:: IncrementSwing, is tasked with
moving the door just a little bit, and then repeatedly leaving itself a wake-up call to
come back and nudge the door along a little more until the door has been moved far
enough.

It used the vectordist script function to find out how far the door is from its original
position, and compares that with the maximum distance it is supposed to go. If it still
has more distance to cover, it adds the openVector value that was computed back in
::StartOpenSlide to the door’s current position, and then sets the door’s transform
accordingly. This moves the door to the new position. Then it sets its alarm clock with
the call to schedule and settles back for a short nap.

If the door has reached its destination, the sound effect is stopped, and the hold is
scheduled. After the hold, : :StartCloseS1ide is invoked.

::StartCloseSTide starts the door slide sound again, and schedules the : :DecrementS1ide
method for execution. This is not as dreadful as it might seem at first blush, since in
computer talk, execution doesn’t mean to kill, but to “run” or “go.” Hmmm, slippery
words. Anyway, you know what I mean.

::DecrementSlide is pretty much the opposite of ::IncrementS1ide, as you have proba-
bly already realized. The main difference is that it watches for the travel distance to
become zero this time and when it is, it stops decrementing and re-iterating and stuff.

When it does stop, it sets the door’s state flag to closed, pops the door on to its exact
position before it opens (just in case there were some minor cumulative position
errors), turns off the sliding sound, and then finally plays the thudding sound.

125

126

Chapter 4 = 3D Using TorqueScript

Testing the Sliding Door

You can follow the same procedure to get a sliding door into the game world that you
did with the swinging door. Don’t forget to edit the door’s properties, and change its
mode property to “slide.” You do the editing in the Mission Editor, choosing the World
Editor Inspector from the Windows menu (or by pressing the F3 key). Select your
door object in the 3D scene by dragging the cursor over it and corralling it with the
selection box (or by clicking on it), and then locate the door object’s entry in the tree
list at the upper right frame. When you have selected the object in the 3D scene, its
entry will appear highlighted in the tree list. You may have to scroll the tree list pane
down a bit to find the object’s entry, depending on the screen resolution you are using.
When you have the door object’s entry selected, its properties will appear at bottom
right. Click on the Expand All button, and scroll down to the Dynamic Fields area.
Find the property you need to change there.

Obviously there are several ways to improve the code, which I leave up to you—the
various other directions, like “down” and “backward,” for instance. In fact, if you lay
the door down on its side, with the proper vectors, you can make an elevator!

Another improvement would be to create a combined mode, where the door moves
and rotates at the same time, like a one-piece garage door that swings up and back.

A final idea would be code to implement double doors—both sliders and swingers.

Warping

One situation that often comes up in gameplay discussions is what to do in an action
game when your player wanders outside the action zone, or off the terrain tile, or oth-
erwise “off the map.”

One way to handle this is to give the player warnings that he has left the game area,
or the “mission area” as Torque likes to call it. If the player doesn’t return to the play
area within a reasonable period of time, you could penalize him. For example, in
Battlefield 1942, the game will actually kill your player if you linger too long outside
the battle area!

Another approach is to just make it impossible to wander outside the battle area by
placing buildings and impassable terrain in the way, or even a force-field-like barrier:
invisible, but impassable.

Warping

A third way is to treat the map as if it were a spherical world. Then you would have
the player “wrap,” or “warp” (those words are so much alike, and yet both are used to
describe what I'm talking about!) to the far side of the map, just as if he had walked
all the way around the world. That’s a pretty interesting approach with some signif-
icant gameplay impact. So let’s tackle that one.

Leaving the MissionArea

In our workup of this problem, we’ll use an object built into Torque called the
MissionArea. This is an area within your game world that you can define according to
your needs; it even has an editor interface in the Mission Editor. When Torque runs,
it detects when a player has entered or left the MissionArea object’s bounds. When it
does this, it makes a call to that player’s client connection, to the method
::onLeaveMissionArea. How convenient!

There is a drawback of sorts: MissionArea is a rectangular region. This means that when
you travel in a diagonal direction, the distance to cover is greater than if you head off
in one of the cardinal directions. But that’s a minor drawback in my opinion.

The approach we will take is when the server detects that we've left the mission area,
we check to see which side we’ve gone out on, and then warp the player to the oppo-
site side. It’s not a very complex treatment, but it works. In Figure 4.6, if the player
leaves the mission area at position A heading north, he is warped to position A, still
heading north. Likewise for position B when heading west, the player warps to posi-
tion B), still heading west. In addition to ensuring that the player’s travel vector
remains the same, we must allow for changes in terrain height between the starting
and ending positions of the warping action.

127

128

Chapter 4 = 3D Using TorqueScript

Getting Ready

To prepare for this, we will use an extra small MissionArea object. This allows us to
quickly test the warp code without having to run all over the place for great long min-
utes at a time.

Run the Torque Demo, and load up the FPS mission in server mode, as you've done
before. Then move to a fairly open and flat area in the map, one that visually appears
to be about 50 meters square of not too hilly terrain. Then press the F11 key to bring
up the Mission Editor. From the Window menu, choose the Mission Area Editor. You
will get a frame over on the right like the one shown in Figure 4.7.

sizing

handle ~_A!

>

plaver
position

Figure 4.7 The Mission Area Editor.

Inside the editor, your position is marked with a V-shaped indicator. Check the Edit
Area box, and a red box with eight sizing handles will appear. You may not be able to
see all of the sizing handles. If you “grab” one with the cursor, you can change the size
of the mission area. If you click and drag your cursor inside the mission area, you can
move it around. What we need you to do is resize the mission area until it is really
small, as close to 80 units wide and 80 units high as possible. Figure 4.8 shows the re-
sized mission area. Note the coordinates and sizing data in black at the bottom left.
You want the “W” and the “H” values to both equal 80, or close to it.

Warping

coordinates

& size data “\

>
A\
shrunken
mission
area

Figure 4.8 The resized mission area.

Caution

Okay, there's a teensy-weensy bug here in the Mission Area Editor. Normally, when you add
or change things in the Torque Mission Editor, the engine sets a thing called a "dirty" flag that
keeps track of whether or not you've changed anything. If you have changed something, then
when you select the File menu, the Save item will be enabled. After you save your work, the
Save menu item is disabled (grayed out) so that you can't use it again.

However, the Mission Area Editor sometimes doesn’t seem to set the dirty flag when you make
changes to it. You have two choices:

a) use File, Save As, which will require you to name your file (you want to use exactly the same
name, which is "demo/data/missions/fps.mis”)

or

b) make a small, inconsequential change to something else that will set the dirty flag and
then use the Save function as described in the text. A simple change would be to locate some-
thing in the 3D scene using the World Editor Inspector (F3) and just move it ever so slightly.
Then choose File, Save.

If your File, Save menu is grayed out, | recommend using option b, because you won't be able
to accidentally misname the file.

Save your mission by choosing Save from the File menu, and then exit the game for
the moment.

129

130

Chapter 4 = 3D Using TorqueScript

The Script Code

Next, you need to add in the script code that will accomplish all this magic.
Surprisingly, there is very little code involved!

Open the file \A3D\demo\server\scripts\game.cs and locate the method: function
GameConnection: :onLeaveMissionArea. It’s a placeholder method that isn’t doing anything
very interesting. Okay, it is in fact doing nothing at all. (If you discover that there is
stuff in there already, then check your code for cooties. Someone’s been messing
around in there...) Put the following code in between the braces that open and close
the function:

Caution

There are two onleaveMissionArea methods. One is a GameConnection method, and the other is
a Game method. You need to use GameConnection: :onLeaveMissionArea.

#longitude = getword(MissionArea.Area,0);
%latitude = getword(MissionArea.Area,l);
twidth = getword(MissionArea.Area,2);
%height = getword(MissionArea.Area,3);

%tf = %this.player.getTransform();
%x = getword(%tf,0);

%y = getword(%tf,1);

%rotation = getwords(%tf.3.6);

if (¥x < ¥longitude)

&x += twidth;

else if (%x > (%longitude + Zwidth))
%x -= Fwidth;

if (%y < ¥latitude)

bty += kheight;

else if (%y > (%latitude + %height))
ty -= %height;

#found = ContainerRayCast (%x SPC %y SPC "1000", %x SPC %y SPC "-1000",
$TypeMasks: :TerrainObjectType, %this.player);

tnewPosition = getwords(%found,1,3);

#this.player.setTransform(#newPosition SPC %rotation);

Warping

Here is what the code does. The first four statements extract the longitude, latitude,
width, and height of the mission area from the MissionArea object. Now that’s not true
latitude and longitude, but it’s close enough for our purposes. The longitude and lat-
itude coordinates indicate where the north-west corner of the MissionArea object is.
The width and height indicate those respective measures for the dimensions of the
mission area.

Next, we find out where the player is by grabbing his transform, in an operation you've
seen before. We only want the X and Y coordinates of the player’s position. We can
toss away the Z value for reasons that will become obvious later. We save the rotation
information in order to preserve it for later restoration.

Then we go through a series of tests to figure out which face of the MissionArea object
we have transited. For example, if our X coordinate (our longitude) is less than the
longitude of the north-west corner of the MissionArea object, then we passed through
the western face, heading west, and we need to warp to the eastern side by adding the
width of the area to our longitude.

If we aren’t on the west side, then we check to see if our X coordinate is larger than
the longitude plus the width. If it is, then we have passed through the eastern face,
heading east. In this case, we want to subtract the width of the area from our longi-
tude.

If we aren’t out on the east or west sides, then our longitude is still inside the defined
area of the MissionArea object.

We go through a similar series of tests for the Y coordinate, using latitude and the
MissionArea object’s height, dealing with the north and south faces adjusting as needed.

When we have adjusted our X and Y coordinates (the actual warping part), then we
have to figure out what the Z coordinate of the warped-to position will be. We do this
by turning to our friend, the ContainerRayCast function. Remember how we used this
function to find a door in our line-of-sight? Now we will use it to find the height of
the terrain at the X-Y coordinates of our warp destination. Our start and end values
will have the same X-Y coords, which are the ones we’ve just computed. We set the
start and end coords’ Z value to be really high over the terrain, higher than we know
the terrain to be at its highest point, and lower than it can be as well. We set the mask
to look for Terrain, and also tell it to ignore our player avatar (just in case, even though
we know it will not be looking anywhere near where our avatar is).

131

132

Chapter 4 = 3D Using TorqueScript

The return value is a string that contains the id of the found object as the first word.
We don’t care about that, but the next three words are the X-Y-Z coordinates of the
intersection of the ray with the terrain. And that is exactly where we want to put our
player! Wooohooo! So we use the ubiquitous getwords function to grab those coords
and stick them into a position variable. We combine that position variable with the
preserved rotation data, pass the result into setTransform for our player, and bingo!
Instant warp.

Testing the Warp

After you get your code typed in, launch the demo, load the FPS mission, and motor
on over to where you created the mini-mission area. You can find your MissionArea
object by entering the Mission Editor and looking for the red translucent 3D box that
surrounds it. Once you've made your way inside the area, turn and go running off in
any old direction. Keep running. More. C’'mon, keep on running, now. Eventually you
will come to the boundary, and blink! You will find yourself on the other side of the
area and entering into it again. You can amuse yourself for hours with this little gizmo.
Okay, well maybe you can’t, but I can! Ahem. Another name for this behavior is tele-
porting. At this point, I could easily interject a lame “Beam me up, Scotty!” joke, but
I will refrain in deference to your sensibilities.

Oh yes, before I forget—in practical terms, you will probably want to make the
MissionArea object at least as big as a single map, and maybe even larger. About 2048
world units on a side.

Moving Right Along

Although we only covered three topics, there was a lot in there. You've seen how we
can use an optimized rotation scheme, using a single, fixed axis, to achieve swinging
doors.

And then we explored a more general purpose approach to movement, and applied
it to creating sliding doors, which have many potential applications, as doors, hatches,
and even elevators.

Finally, we saw that there is a quick and easy way to warp a player across a map, to
get a sort of “round the world” capability. I don’t doubt that a deviously creative mind
could quickly come up with several other uses for the warping effect.

PART Il

~ARTIFICIAL
INTELLIGENCE

or quite a long time in the world of computer science, the field of artificial

intelligence (Al) was looked upon as one of the Black Arts. Oh, not in any sort

of bad way—no association with the Dark Side, or anything like that. But there
was a certain sense of mysteriousness and otherworldliness about it.

That’s not to say that there was never any negativity, though. Movies like 2001: A Space
Odyssey depicted really, really smart and self-aware computers running amok and
killing people. Indeed, intelligent machines often were portrayed as somewhat the
stereotypical science fiction bad guys. Even the inestimable Isaac Asimov had his
positronic-brain-powered robots that were often in danger of rampaging around the
countryside. In fact, he invented his Three Laws of Robotics as a plot device specifi-
cally designed to keep artificially intelligent creations fully under the control of human
agency.

So it is little wonder that for several decades, those that delved into the real world of
artificial intelligence, in contrast to the fictional variation, were looked upon as “way
out there” in two, apparently contradictory contexts: sanity and science.

133

134

Part Il = Artificial Intelligence

There is a running joke that underlines this dichotomy. Whenever a serious inter-
viewer asked an Al researcher when we would see truly self-aware “thinking”
machines, the answer was frequently, “within ten years or so.” I still hear that answer
from time to time, some 60 years or so after Al research started in earnest!

That research began with Alan Turing and his famous “Turing Test” (see sidebar) and
slowly grew through the ‘50s. Al research received a huge boost at MIT in 1960 with
the development of LISP, a language designed specifically for research into artificial
intelligence. There was a tremendous amount of optimism in those days, which led
to the perennial “ten more years” expression. The optimism was fairly justified. The
first computerized mathematical proofs came about in those days as well as the first
computer to play chess and the first computerized psychoanalyst—ELIZA. Eliza was
a pretty good, but not perfect, Turing Test candidate.

The Turing Test

A human carries on a conversation in his native language with two other parties. One is
another human and the other is a machine. If the first human cannot reliably tell which is the
machine and which is the other human, then the machine has passed the test. The machine
cannot be distinguished from a human. Now the machine has to try to appear to be human.
For the sake of universality (testing the linguistic capability of a machine) and simplicity, the
dialog is limited to a text-only system like a teletype machine as Turing suggested in the early
days or Internet Relay Chat (1rc) in modern times.

With the fullness of time, the field of artificial intelligence filled out and spun off
many sub-specialties: expert systems, fuzzy logic, learning systems, least-cost routing
or path-finding, path-following systems, image or pattern recognition, and neural
networks, to name the biggest areas of research. Many of these specialty areas have
something to offer the computer game world, especially when it comes to providing
“smarts” for a game’s non-player characters (NPCs).

Part Il = Artificial Intelligence

In fact, the game industry now recognizes the importance of Al in games so much
that the International Game Developers Association (IGDA) now has a steering com-
mittee called the Al Interface Standards Committee (AIISC). The AIISC is attempt-
ing to create an Al interface standard similar to OpenAL (for audio) or OpenGL (for
graphics) that Al developers can use to hook into a library of low-level Al functions,
like path-following or finite-state machines.

In this way, we can raise the bar for game Al development and free up valuable devel-
opment resources to address more abstract concepts like emotions, complex interac-
tions, or high-level reasoning. However, such an interface is still not on the horizon,
and it will probably not be until the end of the decade, 2010 or so, before we’ll have
a fully featured Al interface library in our bag of tricks. I'd like to be proven wrong
in this. Perhaps by then, we’ll also have Al routines in hardware as well!

In this part of the book, we’ll take a look at how to tackle some of the standard game
Al issues, writing our own code, and using Torque’s built-in Al features.

135

This page intentionally left blank

CHAPTER 5 i

EASING INTO ARTIFICIAL
INTELLIGENCE

s we’ve seen, artificial intelligence can be as broad a topic as we want to make

it, with entire books and multi-volume sets of books written about it. We are

talking about computer-controlled characters in a computer game, so
remember that when you see the term Al used in the general form in this book.

Our focus in this book will be specific to either areas where Torque provides built-in
Al support or useful game-play-specific features that we can cover within the con-
fines of a few chapters. Figure 5.1 shows a scene from ThinkTanks, a game from
BraveTree Productions LLC that uses the Torque Engine. Six of the seven players
shown in this scene from that action game are Al tank characters (‘bots).

In this chapter, we will take a brief survey of the areas of Al that are being used, or
hold potential for use, in computer games.

Computerized artificial intelligence is mostly about the nuts and bolts of simulating
or emulating decisions and decision-making processes that real intelligent beings
carry out. Some of the techniques, like pattern-matching, try to replicate the func-
tion of low-order organic sense systems, like vision or hearing. We try to make sense
of the input.

Another approach is to skip to the decision making or data manipulation stages of
thought. Rules-based systems and expert systems focus on these areas.

Then there are the esoteric areas like neural nets that are a bit of both—they try to
emulate the hardwired connections of our brain’s neurons while trying to solve large-
scale problems by learning how to solve a series of smaller problems along the way.

137

138

Chapter 5 = Easing into Artificial Intelligence

Figure 5.1 Al tanks in the game ThinkTanks.

As of yet, there is no single silver bullet or ultimate answer to the question of artifi-
cial intelligence. And there may never be.

What It Isn't... Yet

When the average Joe ponders the idea of artificial intelligence, he probably tends to
imagine something along the idea of a “thinking machine.” There is a fair amount of
debate regarding whether any currently state-of-the-art computer or machine is actu-
ally thinking or not. I'm inclined to say they can think—maybe not as well as a para-
mecium or amoeba can think, mind you! Nonetheless, they are, therefore they think.

However, I don’t believe there are any systems anywhere that can feel or even present
a reasonable approximation of feeling. And there may not be any for quite a long
time. In order to experience feelings or emotions, it seems to me that a thinking being
needs to be self-aware. I can’t define that in any specific way that will hold up in the
general sense for you, however. Even the heavy hitters in philosophy and Al research
can’t really define what self-awareness is.

What It Is... Mostly

I think we all can recognize self-awareness and feelings when we see them. (If we
choose to. Some of us can be hard-hearted bastages, I'll grant you that). Notice that
feeling in this context should not be confused with sensing. We have a dizzying array
of sensor systems for robots and machinery that can detect physical surfaces, sound,
heat, light, acceleration, and many other natural and physical phenomena. Feelings
are more ephemeral and tied into our sense of self and our relationships with others.

Artificial intelligence isn’t there yet. Not even close.

What It Is... Mostly

Al capabilities today tend to be automated substitutions, or sometimes simulations,
of one or more aspects of what we consider to be the features of intelligence that can
be found in humans and other animals. In some cases, some of these artificial capa-
bilities are far more powerful than their human inspirations when employed with
sufficiently powerful computer resources. In all cases, though, they remain special-
izations or subsets of the broader concepts of intelligence and reasoning.

Most of the Al capabilities that have been explored attempt to simulate an overall
process rather than try to reproduce every low-level step that organic systems employ.
An achingly obvious example of this is the expert system which uses computer data-
bases and look-up software to obtain the desired information. The database bears lit-
tle or no resemblance to an organic brain, and the organization of the data has
nothing in common with the way information and data are stored in brains (that sci-
entists are aware of, anyway). And yet many expert systems are able to do a fair job
at substituting for specialized professionals, like physicians. It depends on the par-
ticular field, and how well it is known, of course.

There is some Al research that is endeavoring to mimic the low-level “hardware”
aspects of human intelligence. Neural nets, for example, try to approach the issue of
problem solving using software modules that interact in ways that we imagine neu-
rons in the brain interact. Some approaches to pattern-recognition in imaging sys-
tems attempt to use what little is known about how organic vision systems function
to identify objects, writing, and drawings.

Even though we have a long way to go before we get to truly intelligent machines or
computers, there are still many ways that Al research can benefit us in developing
computers games.

Fundamental to most applications of artificial intelligence is the need to solve prob-
lems. Notwithstanding my earlier assertion of self-awareness, many people carry the
opinion that problem-solving ability is the best measure of intelligence.

139

140

Chapter 5 = Easing into Artificial Intelligence

Searching and Routing

Least-cost routing and searching systems are able to use specialized techniques—some
of which are clever and subtle, and some of which are mere brute force—to simu-
late the intuitive leaps of understanding or recognition that the average human brain
can generate, sometimes quite amazingly. Path-finding is a variation of the routing
problem.

In any event, one of the most vexing challenges to be met and surmounted when
applying Al techniques to real world problems is the scale and complexity of most
situations—even those situations that we thinking humans might consider very naive
and simple. A great deal of effort in the early years of Al research was spent develop-
ing fast, efficient, and comprehensive search methods. The driving force behind these
efforts was the limitation of early computing power.

Many Al researchers consider the activity of searching to be the single-most impor-
tant aspect of problem-solving, and consequently, artificial intelligence.

When we search for things in lists, databases, or in the big old world out there, we
end up creating a map, or path, from where the search began to where whatever we
were looking for is found. This path is called a route. There can be many different
routes to get from one place to another, each with its own particular set of attributes.
Imagine plotting a route from your home to work, as shown in Figure 5.2. Some
routes can be interesting, and some boring. Some might be hazardous, and some quite
safe. Many of them will look almost identical, with only mild variations, while oth-
ers will vary wildly. Usually, when we search for routes, we want to find the best route
that matches criteria that are important to us. In fact, when it comes to the daily com-
mute, most of us would like to find the shortest route, in terms of time.

To find the best route, we would measure the cost of each commuting route in terms
of the time it takes to follow the route. More time equals more money; therefore, we
are most interested in the least-cost route. This also applies to things like airline sched-
ules, with layovers, plane changes at different cities, and so on.

Rules and Expert Systems

Knowledge bases substitute for organic or institutional memory. Expert systems and
rules-based decision systems are stand-ins for years of human diagnostic and analytic
experience (and sometimes even for bureaucratic systems) and are used to mine
knowledge bases for answers to problems, search for relationships, and dig out pat-
terns and threads of related information.

What It Is... Mostly

Flgure 5.2 The dally commute—which way to go?

One area of games that quickly comes to mind when pondering how to use an expert
system in a computer game is the role-playing game (RPG) genre.

Consider the idea that the computerized players used in a role-playing game neces-
sarily have expertise in at least the aspect of the game in which they are used. Many
RPG Al characters are there to help players on their various quests. If the game world
is broad and rich enough, an expert system would be a great tool for extracting rele-
vant information from the game world. Most expert systems have some kind of learn-
ing capability through which information is added to their knowledge, as well. This
can be used to build up an understanding of the player’s playing style or his pattern
of tackling challenges and movement. Based upon this learning, the game’s expert
system could be used to modify its responses, making the game harder—therefore
more challenging and interesting—for players that are romping through the game
world too easily. Or, the same approach could be used to temporarily ease up on the
player in order to prevent him from becoming discouraged.

In fact, an expert system could even become a game play feature. Imagine a real-time
strategy game where you train a cohort of Roman soldiers to attack and defeat a
particular enemy. And then you train that enemy to defend against the Romans, and
SO on.

141

142

Chapter 5 = Easing into Artificial Intelligence

All of the offensive and defensive capabilities of each of the historical armies would
be contained within a representative database. When a particular set of circumstances
arises, and an automated defending army needs to figure out which tactics to use, the
software would encapsulate those circumstances as a set of parameters for a search
through the expert system, looking for the best methods to counter whatever may-
hem its enemy is throwing at it.

Logic and Uncertainty

Computer programming is a house built out of bricks of logic. In fact, artificial intel-
ligence programming is often thought of as a specific blended application of two
forms of logic called propositional logic and predicate logic, or predicate calculus.
Furthermore, within programming languages we even employ a more specialized
form of propositional logic called Boolean logic, or Boolean algebra.

Propositional logic frolics in the realm of the truthfulness or falseness of assertions,
or propositions. Classical propositional logic, or Boolean logic, deals with only two
states: something is either true or it isn’t.

Predicate calculus (in no way related to regular high school calculus) is a refining
extension of propositional logic that embodies the relationships between objects and
the truth values of those relationships, in Boolean terms.

The point behind all these ninety-dollar words is that when using these kinds of logic,
even in the most complex of logic statements, all we get is a black-and-white world.
Something is either true or it isn’t. If it isn’t on, it must be off. If it isn’t evil, it has to
be good.

However, many, if not most, problems in need of solving can’t comfortably be shoe-
horned into terms that adapt well to yes or no answers. Notice that I said comfort-
ably. We can still do it, and we can often get working results or decisions by the
application of classical logic to our problems. And there is a great deal of utility to be
had from the simplification of problem statements that happen when we try to
squeeze different problem feet into various logical shoes, looking for a good fit.

However, sometimes we need more than just a suitable answer; sometimes we need
the best answer. It often happens that we can’t precisely determine the best answer
because some aspects of a problem are unknown. Sometimes we have incomplete
data to feed to our problem solver. Sometimes we have no hard data, just a descrip-
tion of the data.

What It Is... Mostly

For example, how do we know when we are pressing on the gas pedal just the right
amount to accelerate the car as quickly as possible without squealing the tires? Well,
look at that problem statement: “just the right amount,” “without squealing,” and “as
quickly as possible.” That’s not data! How can one solve that problem? We do it by
“pressing the gas pedal just enough, but not too much!” Yikes! Pretty clear, huh? Nope.

Pretty fuzzy, actually.

Fuzzy logic is a way of controlling processes with imprecise values and approxima-
tions where often all we have is a description of data or of valid ranges. It contains
mathematical ways to represent concepts like “almost enough,” “fast,” and “usually,”
and employ them in computations that mimic human control processes.

Fuzzy logic utilizes a simple, rule-based IF A AND B THEN DO C method for solv-
ing control problems, instead of creating a mathematical model of a system (the “old-
fashioned way”). Fuzzy logic depends on a user’s experience rather than any detailed
technical understanding of a system. Rather than dealing with controlling tire slip in
terms such as “V = 107, “S < 2007, or “150 < SLIP < 300", we use terms like:

IF (not fast enough yet) AND (tires not squealing)
THEN (add more gas pedal pressure).

Or, as another example, say, in the shower, terms such as the following are used.

IF (water is too hot) AND (skin is heating quickly)
THEN (cool the shower water quickly)

These terms are imprecise and yet very descriptive of what's going on and what needs
to be done. If the shower water temperature is too cold, you will fix it very quickly
and easily. We use these terms to describe our control solutions, and use the fuzzy
logic constructs to convert those expressions into computable solutions.

Natural Language Processing

Whereas problem solving is considered to be the most common task of applied Al,
natural language processing is usually considered to be the most important. If we can
ever achieve the state where computers can unambiguously understand the spoken
word of a given natural human language, a whole ton of software development would
become unnecessary. Then all us software engineers could retire to a beach in Cancun
and sip on banana daiquiris for the rest of our days. Yeah, I wish.

143

144

Chapter 5 = Easing into Artificial Intelligence

But the reality is (dagnabbit!) that natural language processing is not quite as good
at extracting meaning from loosely formatted spoken and written words as humans
are, but its limited capabilities are useful in areas that benefit the disabled, transla-
tion systems, and word processing spelling and grammar checkers.

The biggest obstacle to the “ultimate” natural language processing system is the utter
complexity and size of human language, with its nuances and shaded meanings, con-
founding and conflicting syntaxes (not to mention spelling and grammar rules for
written words).

The objective isn’t merely to listen to spoken language and extract or identify words
(parsing). That’s the easy part. The real holy grail is the ability to extract meaning. On
top of that, the meaning must be properly in context—a very tall order.

A fair amount of progress has been made using restricted languages, with limited
vocabularies, and well-defined and simple grammar rules.

Neural Networks

Neural networks are information processing constructs that try to mimic the way
biological nervous systems like the brain process data into information. A neural net-
work is made of many interconnected processing elements called neurodes (the func-
tional equivalent to a brain’s neurons) and synapses that interact to solve specific
problems (see Figure 5.3). The network’s elements convert input patterns into output
patterns, which themselves can be used as input patterns for other networks. Neural
networks learn by example, just like people do. A neural network needs to be config-
ured for specific applications, like image recognition, through learning processes. In
living systems we suspect that learning involves adjustments to the synaptic connec-
tions that exist between the neurons.

Neural networks can extract meaning from complex and imprecise data; they can be
used to identify patterns and trends that are too complex to be noticed by either
humans or other Al methods. Trained neural networks are often considered to be
“experts” in the realm of data and information they’ve been used to analyze. They are
then used to project into given new situations and areas of interest to resolve “what
if” scenarios.

Neural networks exhibit adaptive learning—the ability to learn how to perform tasks
according to the data encountered during training or initial experience. They can cre-
ate their own representation of the data and information they receive while learning.

What It Is... Mostly

Input Pattern
Synapses Y YY 8 9 YY
—® —>
Y T— i
l——» L
©
° Q
e 5
£
=
. O
f)()() e o o (OO Neurodes

Figure 5.3 An example of a neural network's interconnections.

Neural networks also embody a modicum of fault tolerance or failure tolerance due
to the way they store information. If you partially destroy a network, you will get
some degree of performance degradation, but it usually still functions and does its
job. Even major network damage will probably not completely cripple a network’s
capabilities.

Neural networks take a different approach to problem solving than that of conven-
tional computing. Conventional software uses an algorithmic approach—the com-
puter follows a set of instructions to solve a problem. The programmer needs to know
the specific required steps before he can create the software to solve the problem. That
means that with conventional software, we can only solve problems that we know and
understand thoroughly. We call this the cognitive approach.

Neural networks process information in a way similar to the human brain. Neural
networks learn by example; they can’t be programmed to perform specific tasks. The
examples must be selected carefully; otherwise, useful time is wasted or even worse,
the network might not function correctly. The disadvantage is that because the net-
work finds out how to solve the problem by itself, its run-time operation can be
unpredictable.

145

146

Chapter 5 = Easing into Artificial Intelligence

I believe that neural networks will likely never replace the cognitive approach to solv-
ing problems with software, but they do provide an excellent complementary capa-

bility.

Implementing a neural network system is no trivial task, however, and I won’t be
implementing one in this book. Fortunately, there is a great deal of theoretical and
practical information available on the Internet, if you think neural networks are the
right fit for your needs.

GroupThink

A burgeoning area of research in the Al field is the modeling of groups of intelligent
entities as groups—not as a collection of individuals. Group intelligence of this sort
is usually called swarm intelligence, and it’s becoming a busy area of research focus-
ing on the study of different self-organizing processes in nature. The research uses
observable natural behavior as inspirational models.

This study is interesting and novel in Al research because such group systems lack a
complex single central controller that normally coordinates or directs different tasks
in the group system. On the contrary, swarm systems have simple entities that have
only local knowledge, but together they form an intelligent system. Researchers have
applied this technique to a large number of difficult optimization problems, includ-
ing traveling salesmen, the quadratic assignment, scheduling, vehicle routing, rout-
ing in telecommunication networks (including ad-hoc networks), and in swarm
robotics.

Note

| like to think of collective behaviors using a few simple, but everyday terms that describe the
collection, and therefore the group behavior.

A herdis a collection of members that all have exactly the same goals and predictable behav-
iors. Each member of a herd is almost exactly the same as the others, with physical capabili-
ties being the only real variation. A herd of sheep or a herd of elephants are good examples.
Herds are typically directed by outside influences. Humans, other animals, or environmental
considerations (weather, lack of food) determine what the herd should do at any given time.
A herd is mostly made up of followers, but there is often at least one permanent leader, and
sometimes several. Leaders act more as guides than true leaders, responding to the external
stimuli when the situation warrants, but otherwise behaving like the rest of the herd. When
the leaders start to move, or react to something, the followers take their cues from the lead-
ers. Absent from any outside influence, a herd is generally semi-active; each member will be
engaged in feeding itself, helping groom its neighbors, or caring for offspring. Without an
external trigger, the herd will continue this communal grazing behavior forever.

GroupThink

A swarmis a collection of members that appear to behave in ways similar to the members of
a herd. However, the behavior is more self-serving. Think of a swarm of flies or a school of
fish. There are no fixed leaders or followers. Each member makes decisions based upon both
external influences and the behavior of the other members.

A pack is a collection of individuals with common goals, similar and complementary meth-
ods, and predictable similar, yet individual, behaviors. A pack of wolves or a pack of moun-
tain bikers come readily to mind. The members of a pack will always cooperate in pursuit of
a common goal, but each member usually has a distinct role, depending on capabilities. The
distinctions may be subtle, but they are there. Pack members make their own decisions that
advance the pack towards its goal, and yet there is usually a long-term leadership structure
based on characteristics such as age, strength, aggressiveness, cleverness, and so on. The more
capable members are usually the leaders, and the less capable members, the followers, ben-
efit from that leadership. The followers contribute to the success of the pack by their presence
and availability to perform more mundane tasks like lookout or scout.

As noted earlier, in general, we use the term swarm intelligence when speaking of herd or
swarm group systems. Packs are not considered to be part of that paradigm.

Interesting issues in the area of swarm intelligence worth investigation include:

Self-organization and swarm intelligence in game applications
Self-organization and swarm intelligence in business applications
Social insects and animals

Swarm robotics

Emergent coordination (coordinator-less coordination)

Particle Swarm Optimization (PSO)

Ant Colony Optimization (ACO)

Multi-Agent Systems (MAS) exhibiting swarm behavior

This is obviously not an exhaustive list, and in this book we won’t even delve into the
items listed here, except for the first one (obviously). You should consult with some-
thing like the Oracle of Google for more information on the other topics, if you want
to pursue them. I'm providing the list here to illustrate the richness of opportunity
for research and inspiration.

Swarm intelligence can be used in a variety of ways and in genres where the applica-
tion might be surprising. One example is the use of swarm intelligence in military
real-time strategy games. When there are organizations of a large number of similar
units, like a division of infantry, swarm techniques can be applied to the attacking
modes of the soldiers.

147

148

Chapter 5 = Easing into Artificial Intelligence

On a practical level, applying swarm intelligence to a problem will generally only
require defining the behavior or decision set of a single instance of a swarm mem-
ber. You would then instantiate (or copy) as many replicas of the swarm member as
needed, feed each its own set of initial conditions, and then set it loose. Mayhem and
much hilarity ensue.

Until, of course, you get the swarm algorithms and initial condition settings just
right—then you can watch in awe as your swarm of flies becomes just as annoying
as the real thing. Well, you asked for it!

What the Near Future Holds

The Al Interface Standards Committee of the Al Special Interest Group (SIG) of the
International Game Developers Association (IGDA) consists of about 70 experts from
game studios, the academic world, and middleware companies. They’re trying to con-
jure up usable and useful interface specifications for game Al functionality (like
OpenGL or DirectX do with the graphics). Nowadays, game Al developers rarely have
a chance to work on higher-level Al, like believable and interesting NPCs that can
learn, that have emotions and complex reasoning and interaction skills, or an auto-
mated story-telling system that adapts to a player’s interests. It's much more likely
that an Al developer will spend his time struggling with things like low-level path-
finding details.

Many believe that the next qualitative jump for artificial intelligence techniques in
games will be dependent on appropriate interfaces for in-house or external Al mid-
dleware, unburdening game Al developers to worry about low-level procedures and
enabling them to focus on higher-level creative Al tasks. To make such interfaces and
the related middleware feasible, the development of standards for game Al interfaces
is necessary, such that the interfaces do not only match a single game but are applic-
able in a wider scope. Standards in this area may also provide a basis for Al hardware
components in the long run.

This focus will avoid an “information overflow” for the participants, makes it possi-
ble to go into some details, and allows us to hold a more interactive session than in
the past years. The subset of areas that will be covered (the Committee has working
groups on “path-finding,” “steering,” “finite state machines,” “rule-based systems,”
“goal-oriented action planning,” and “world interfacing”) will be decided one or two
months before the session so that the most advanced subset of interfaces can be pre-
sented and discussed.

Moving Right Along

Moving Right Along

In this chapter, you've been introduced to the concepts of artificial intelligence and
have been given a picture of the breadth and depth of the subject.

We talked about how Al is not quite all it is sometimes cracked up to be, and yet there
does remain great hope for the future in terms of capabilities. Some approaches to
artificial intelligence try to emulate low-level human sensory processes, while other
approaches try to simulate thinking processes by using information and data to pro-
duce results that a human would come up with, but using methods more appropri-
ate to computer technology.

We’ve seen how Al techniques are used in limited and focused ways in computer
games. The point is to re-create the effects of intelligent behavior in the most effi-
cient and directed ways possible to minimize development effort. The areas of
research are diverse, covering topics as broadly different as natural language parsing,
swarming intelligence, path-finding, and fuzzy logic.

149

This page intentionally left blank

CHAPTER 6 i |

UsSING Al IN GAMES

n Chapter 5 we took the five-dollar tour of artificial intelligence and examined
the most fruitful area of Al research that can be applied to games. If ever there
was opportunity for innovation in game development, Al is the place to be.

In this chapter we will rummage around looking at the ways we can use Al techniques
in our games. It’s useful to remember that while Al is often used to model real world
behaviors, it can also be used to create new gameplay ideas that have no analog in real
life.

For example, although an Al chess playing system might model a human chess player,
another game could employ an Al expert system in an adventure game to analyze and
predict a gameplayer’s last and potential next moves, and insert new and more diffi-
cult obstacles to challenge the player. This latter approach really has no real world
counterpart.

Behavior
When thinking of intelligence, there are four broad types of behavior that are always
useful in games and therefore need to be simulated or reproduced in some way:

= Perception

= Action

= Reaction

= Learning

151

152

Chapter 6 = Using Al in Games

Yes, I know, there are other types of useful behaviors, but these four categories pro-
vide a good generalization, especially when considered in the context of computer
games.,

Perception

Perception is the ability of some nominally intelligent entity to detect what is hap-
pening in its world, nearby or from afar. For humans, all the things we can perceive
are detected by one of our five senses: sight, touch, smell, taste, and hearing.

For artificial intelligence in a game context, none of these things exist. How could
they, it’s only software! Heh. Gotcha.

But in our game software, we simulate the senses, and we do that quite easily. As game
developers and programmers, we can feed the actual software data or information
from one computer construct (audio system, collision system, rendering system, and
so on) to the other (player’s avatar) on a game server, and then perhaps via a LAN to
the player’s client computer.

There are a number of gameplay stimuli that should be perceived by Al characters
that would provoke a reaction of some kind. These include:

= Visual sighting of the player

= Observation that the player is firing a weapon

= Observation that the player is firing at the Al character

= Observation that the player is firing at an Al ally

= Near miss of weaponry (bullet crack, nearby explosion, and so on)

= Observation that other Al is shooting, being shot, or otherwise engaged in a
fight
= Nearby sounds caused by other Al or the player (like footsteps or a window

being broken)

® Observation that the player is taking a particular route or is in a particular
location

It can be annoying to play a game where the Al doesn’t even notice a rocket-propelled
grenade (or an exploding crossbow bolt) that detonates five feet in front of it. In
Figure 6.1, you can see an encounter between a player and an enemy guard. The good
news is that the enemy guard could not be bribed with a nice tasty ear of corn. The
bad news is that the enemy guard detected that the player was unarmed and there-
fore took no action, even though the player is an avowed enemy. Oops. This, my
friends, is a case of good perception, but poor reaction.

Behavior

Figure 6.1 The unbribable guard.

Or maybe it’s just a case of the Al guard having a strong moral sense and refusing to
kill an unarmed player. Yes, that’s it! Cough.

Action

Action behaviors are the sets of those things that an Al chooses (or appears to choose)
to do all by its lonesome. The actions are based upon a set of rules, or perhaps “stand-
ing orders.” The actions may be in response to changes in the state of the game “day”
or other variables. But note that these would be merely responses, not full-blown reac-
tions to gameplay events.

Some actions are timer or schedule driven. Other actions can be simply another step
in a series of sequenced steps. In general, an Al action is an action (or response) that
was not triggered by player behavior.

Actions are typically generated through scripted or canned behavior sets. As game
designers, we may want to create the appearance of a busy street in a town, with peo-
ple walking, sometimes running, from place to place, or calling out greetings, enter-
ing and leaving buildings, and things like that.

153

154

Chapter 6 = Using Al in Games

We could write script code to start our Al character on its merry way, walking down
the sidewalk, perhaps humming a little ditty to itself, entering a building at the front,
and leaving it by the rear, heading up and down a few other streets for a while until
it gets to an end point, whereby it is removed from the game world and replaced by
some other Al character with a different visual appearance, route, and set of actions.
Or, we could have the character circle around to where it began and do the whole
thing over again. Or we could have the same character retrace its steps back to where
it started, and then start over again. You get the point...

Whatever we decide to do, we need to ensure that the set of actions and behaviors
matches the sort of things that a player might expect to see happening in the game
world. If there are oddball exceptions, like a character that suddenly shimmies up a
light pole or maybe whips out a machine gun and starts shooting out windows, there
had better be a good gameplay reason for it!

Reaction

Reactions are behaviors triggered by gameplay-related stimuli in the game world, usu-
ally something the player has done, like walking in front of the AI’s machine gun (you
dummy). In addition to getting yourself ventilated, you might spur the Al character
to chase you, or call in a warning to its fellow bit-headed players, or offer to sell you
a magical sword at cut-rate prices.

Some basic reactions are considered to be “normally” expected. If an Al character is
obviously an enemy to the player, then we can reasonably expect the Al character to
react in some way. The simplest reaction would be to open fire. It also happens to be
the most common! Other reactions include shouting to raise an alarm, proceeding
to an alarm switch, or perhaps the Al could lock a door. A more sophisticated system
might tell the Al to hide and then try to follow the player unobtrusively, reporting
his position back to headquarters, whatever that might be.

Earlier I showed you an Al guard that didn’t detect or react properly to the presence
of an enemy player. Well, Figure 6.2 shows an effective enemy Al—a rover type (basi-
cally it just wanders around looking to cause trouble). The Al rover detected two play-
ers driving by in their 4-by-4 trucks and took them out of action. In fact, one disabled
truck even rolled into the other disabled truck. Fortunately, the stunt players in that
scene were uninjured.

As I pointed out earlier, in order to maintain sanity, we only use the word “reaction”
to mean something that an Al character does that is triggered by the player’s actions.

Behavior

Figure 6.2 The deadly rover.

If the player or his actions are not the trigger—directly or somewhat indirectly—then
how the AI character behaves should be considered to be a response, not a reaction.

This careful delineation may not seem important, but it is a useful conceptual and
organizational tool.

Learning

In its rawest form, learning is simply recording information. However, when we think

of an Al character learning, we aren’t thinking of simply stuffing its electronic head
full of facts.

Instead, we usually mean that the Al records, at the very least, which actions work
and should be repeated and which things don’t work and therefore should be avoided.
As mentioned earlier, neural networks are a great tool for this, but they may be overkill
for your project.

Many learning systems just record stuff in lookup tables, as a specialized kind of
expert system. For example, an Al character fires a pistol at a tank (the weapon, its
type, and the target, and its type are well known). If, after the shot is fired, the tank

155

156

Chapter 6 = Using Al in Games

reports little or no damage, then a record of the encounter should be made. The

record should include the weapon and type used, the target and type engaged, and
the effect it had.

The next time that Al character encounters a tank, it will know not to bother with a
pistol.

In general, the learning should be instance-based, meaning that each Al character
learns its own lessons, rather than all Al learning at the same time that the player likes
to run left after shooting a rocket launcher. A cool gameplay feature might be to have
specific knowledge about the player slowly migrate to other Al players over time as
the game progresses. Presumably your enemies would be able to communicate with
each other and pass the knowledge on to others—just not necessarily instantaneously.

What's a ‘Bot?

Once again, that bugaboo of the game development world rears its head: terminol-
ogy. As in other areas, there are different terms in use to describe the same thing,
depending on whom you are working with, what genre you are working with, and
where the people you work with learned about Al

Fortunately, there aren’t many contradictions in the uses of descriptive terms and
words, although there are a few worth noting. The most notable of these noteworthy
notes is the use of the acronym A.L (or Al).

In many genres, Al was first used for enemy computer-controlled characters. These
were often called monsters because, well, that’s what they looked, sounded, and acted
like. Usually there was one monster that was harder to defeat than the others, and
defeating him got you to the next level, or gained you extra special powers or abili-
ties, or something else of natural interest and high desirability. This special monster
was the boss monster or simply boss.

Some of these games would eventually evolve and add computer-controlled charac-
ters that would help the player, rather than hinder him. In order to differentiate these
characters from monsters and bosses, they were often simply called Al So for play-
ers who “grew up” playing these games, Al referred to only the friendly computer-
controlled characters, and not enemy ones.

Players of other games, like the Delta Force series of first-person shooters, usually use
Al to describe both friendly and enemy computer-controlled characters.

Also, Al is an acronym, and as such, is not usually pronounced as a word. This is not
an issue of contradiction, per se, but does affect communication. So you say “ayy eye”

What's a ‘Bot?

pronouncing each letter, and not simply “ayy” as I have heard once or twice over the
years. In fact, I once had a conversation on the telephone where a fellow asked me
“do you have any tips on how to get my ayy to shoot at players and not at other ayy?”

Me: “Ehhh??2?”

Other Fellow: “Huh?”

Me: “You said ‘ayyy””

Other Fellow: “No I didn’t, you did.”
Me: “Huh?”

And the conversation went downhill from there.

In some genres, the computer-controlled characters are called NPCs (non-player char-
acters), while the smarts behind the behavior they may or may not exhibit is called
the Al Now this approach is one that I heartily approve of. Most notably, it is the
role-playing games (RPG) where this terminology is used. However, not everything
that the computer controls in a game that might exhibit intelligence of one form or
another is necessarily a character.

As discussed previously, another term bandied about is ‘bot. Obviously, this is an
abbreviation of the word robot. Sometimes it is written with the apostrophe that
implies its longer parent word, and sometimes not.

And, of course, the term is also not consistently applied across games, genres, or game
communities. In fact, if you listen to two players arguing in a game like World War II
Online, you might hear the first guy complain about the Al being too uber, while the
other guy asserts that the ‘bots are nerfed. It might seem that they are talking about
two different things, since they are talking about the same game! But in both cases
they are referring to the deadliness of the game’s computer-controlled characters.

Note

The term nerfis adopted from the soft, foam rubber created by Parker Brothers and used to
make safe toys that don't hurt children. Balls are made of the stuff and toy dart guns shoot
darts made of the stuff. In computer games, a nerf is a change to either the rules of the game
or the behavior of game objects that weakens or reduces power of the object or rule in ques-
tion. The term may have first surfaced in Ultima Online, one of the first online games with a
large player base.

The word uber is adopted from the German word dber, meaning over, above, or superior
depending on context. In computer games, it is used to mean superior. In fact, not just supe-
rior, but greatly superior, perhaps even to the point of being unfairly superior.

157

158

Chapter 6 = Using Al in Games

The most general usage of the word ‘bot encompasses those Al characters that per-
form certain tasks over and over, somewhat in the manner of an assembly line robot,
with little or no ability to interact with the player (other than to be targets or obsta-
cles). They might shoot at whatever crosses their path, but they don’t seek out play-
ers and attack them. They normally don’t take evasive action when fired upon, and
in fact, don’t even seem to care that they are being or have been shot at.

They are often static, but may be given a path to follow, as if on patrol. In general, a
‘bot is like a piece of furniture, put there to get in your way.

‘Bots are not necessarily characters, though. A ‘bot might be a piece of machinery,
like a Star Wars probe droid. Or it might be something like an automated mining tool,
or a train.

The key point to remember is that ‘bots don’t make decisions based upon what the
players or other Al in the game do; they might react, but the reactions are reflexive,
not reasoned or considered. They do not anticipate, and they do not adjust their reac-
tions based upon the success or failure of their previous actions.

Alas, you will encounter game players and developers who will use the word ‘bot to
describe everything that the computer controls: from representing creatures of var-
ied capabilities to smart (or dumb) machines. It will happen. My best advice is to be
nice to them. Smile and nod and go on about your business. Get your game made.
Let someone else handle the punishment—I mean, enlightenment—of those errant
in the artful ways. That’s it.

Opponents

An opponent is any character or creature in your computer game that tries to pre-
vent the player from achieving his goals; we are interested here in the computer-con-
trolled opponents. As noted, many terms are used to describe computer-controlled
opponents: monsters, bosses, NPCs and so on.

The range of capabilities of opponents runs from a simple guard ‘bot that shoots at
whatever walks in front of it to a sophisticated, scheming NPC that employs tactics
and learns to anticipate moves and clean the player’s clock.

The most important thing to consider when designing your game’s Al opponents is
whether or not the opponents’ capabilities match the player’s expectations. It’s not
your job to outsmart your player, so therefore it is not your Al opponent’s job to do
that either.

What's a ‘Bot?

Sure, you want to make it challenging, but you also want to make the game satisfy-
ing as well. If players get frustrated, they will drop your game and move on to some-
thing else more satisfying and interesting. Too challenging can become boring after
a while.

First, have the difficulty presented by your opponents ramp up as the game progresses.
This can be done by a combination of adding more opponents as the game moves
forward, placing them in more useful and challenging locations as the levels advance,
and making them smarter as the player progresses in the game.

Action Opponents

Action games like shooters, some adventure games, and certain kinds of role-playing
and strategy games have a natural need for a variety of opponents. It’s a good idea to
formalize the varieties and think long and hard about the capabilities of each.

You should design your game’s computer opponents to be organized into different
classes, categories, or types. Whatever terminology you choose to use, your goal is to
have predictable kinds of opponents; however, depending on the context, their spe-
cific behavior should be unpredictable to some degree. Do this by designing several—
at least three—different recognizable types of opponents. Make sure that the places
and circumstances under which they will be encountered is predictable. Make each
type obviously visually different, with different weapons and probably even different
sound effects for utterances. You want your player to be able to quickly differentiate
between the types.

Create a guard type of opponent that is always found at important entrances and
other choke points. Make it behave a certain way, like never leaving its post or at least
not wandering too far away. You can insert a little bit of uncertainty by putting guards
at unimportant places that might merely appear important, but don’t overdo it.

Your player will be satisfied if he can learn what to expect from a guard after a few
encounters. Then when the player approaches what he thinks is a target of high value,
he will expect to encounter a guard. So, always put guards at your high value targets.
However, he will expect low value or no value targets to be unguarded. One or two
surprise encounters with guards will keep him on his toes, but too many such encoun-
ters will no longer be surprises, and will be perceived as tedious, and ultimately, frus-
trating.

As the levels and the game progress, you can make the guards more alert, or more
accurate, or whatever. But they should always behave like guards, and not, let’s say,
like scouts.

159

160

Chapter 6 = Using Al in Games

You can create patrol or rover types that will follow a path and look around, engag-
ing any players they encounter. Give them more freedom to pursue the player, but
remember to set them back on to their patrol route within a reasonable period of
time, or limit of distance. The patrol will force the player to be more circumspect and
alert while moving about. The player will need to learn escape and evasion maneu-
vers in order to stay alive and be successful. But again, it’s important that the player
know what to expect and to learn that he can get away if he goes about it properly.

Create an attack or assault type that, once alerted, has only one thing in mind: hunt-
ing down and killing the player. Because the assaulting opponent is different in
appearance and sound, as well as behavior, from guards and patrols and other types,
the player will be alerted that he cannot expect this character to behave in the same
ways. So, the fact that the enemy hasn’t given up the chase or stopped firing is less
of a surprise. The player will understand that he needs to find another way out of
trouble.

We use the term chasing to characterize the Al algorithms used to enable a computer
enemy to follow and intercept the player or another character or creature. Normally,
a successful chase would culminate with an attack of some sort, but not always. You
might endow an enemy with the ability to chase with the intent of spying on the
player. Or, perhaps the intent is merely to give the player the willies and distract him.

You could also have other types that only respond when provoked, and don’t care
who they meet, the player or the player’s opponents—these are especially useful as
animals or other wild creatures.

With each of the different kinds of opponents, there are different algorithms that need
to be programmed to achieve the desired behavior. You may be tempted to create a
type of opponent that exhibits all of the behaviors. If you do, use them sparingly, with
the clear understanding that they should be used in exceptional cases, as bosses, or at
the later, more difficult, levels of a game.

Sports Opponents

An important feature of opponents in sports games, whether it be auto racing, down-
hill skiing, or one of the ball games, is that your opponents will have the same skills
as the player (in theory, and maybe also in practice, depending on your game).

The skills will probably all be the same; only the degree of superiority (or inferior-
ity) in using those skills changes. This being the case, the variance in capability of the
opponents boils down to their programmed reaction times, accuracy, and tactical
decision-making qualities.

What's a ‘Bot?

In the mano-a-mano sports, like auto racing, each opponent has a different set of
strengths and weaknesses, and the proportional quality of each strength and weak-
ness will vary, sometimes widely. In team sports, the variation can be averaged out
and mitigated across the team roster.

An important thing to keep in mind is that at the professional level of any sport, the
differences between the top, say ten athletes, or top ten teams, can be extremely sub-
tle. There have been Grand Prix races where the entire starting grid has qualified with
less than a second separating the fastest car (pole position) from the slowest car on
the grid. And that kind of spread can be less than a half of one percent of the total
lap time on a track with lap times at around three minutes!

You need to make sure that the proficiency of your game’s opponents reflects the real
world as much as possible.

Board Game Opponents

If your game is a board game, like chess or Go, then you have a tougher row to hoe.
Most players will have had some experience, and many will have a considerable
amount of experience playing the game you are making, in a real-world setting.

Your best approach is probably a “brute-force” method, where you analyze the cur-
rent state of the game board, and then play out, in less than a few seconds, as many
variations of moves as far ahead as you think you can get away with. Modern com-
puters are very powerful and quite capable of performing an amazing amount of pro-
cessing in very little time.

Since board games have clearly defined and limited rules, and a clearly defined and
limited play area, very efficient look-ahead algorithms can be created. You also will
be able to do things like pre-program every possible move into a lookup database,
and using custom-made program code, play through and record hundreds of moves
into a lookup table. At that point, your Al routines will amount to not much more
than sophisticated database lookups.

You adjust the degree of difficulty for the player by hobbling the Al routines: perhaps
by reducing the depth of your solution searches (for example, taking the first solu-
tion that fits, rather than looking for the best fit) or by reducing the number of moves
to look ahead.

Your chess game will likely never be able to beat Gary Kasparov or any other Grand
Master, but I'll bet you could give them a run for their money!

161

162

Chapter 6 = Using Al in Games

Allies

In some games—tactical shooters come readily to mind—you have computer-con-
trolled players that are on your side, helping you complete your mission. In these
games, the Al ally capabilities are very similar to those of Al enemies, with the excep-
tion that the Al ally is on the player’s side and will often be fighting against Al ene-
mies, and sometimes against other players in online games.

You should make sure that your Al allies have access to the same in-game data that
your players have. This is not quite as easy as it looks.

Recognition

For example, you can see and recognize an Al enemy when it comes around the cor-
ner based mostly upon its appearance. Now, you could do the same thing when you
program an Al ally: Give it image recognition software, and have it analyze the scene
the same way you do.

Unfortunately, computerized image recognition is not developed to the same degree
that it is in humans. Fortunately, we can work around this by encoding attributes into
the Al characters. It then becomes a simple matter of having the program code that
controls the AI ally examine the program code and data of the Al enemy, and based
upon those electronic attributes, recognize the enemy. So, using this approach, we
can simulate our human recognition processes.

Care must be taken to avoid giving our Al allies more capability than a human could
possess, however. So, we need to do things like add built-in delays for recognition and
reaction times, to simulate the same limitations in humans.

Communication

Also, we might need to enable our players to give orders, directions, or information
to their Al allies, and perhaps receive the same in return. The simplest way, on the
face of it, is to have the player type in the information and send it to the Al ally. And
in terms of player interface, this is certainly the easiest way.

However, making the Al ally understand the information is a whole different story.
The type-it-in-and-send-it approach invokes the need for natural language parsing
and language recognition. This is a much tougher problem and likely way beyond what
a game company really wants to tackle.

What's a ‘Bot?

First, there is the issue of accuracy and reliability. You really need to make sure that
your parser can extract the meaning when a player sends the following command:
“Meet me by that big green thing. We’ll attack together.” And then the player says:
“Never mind.” Even humans might have trouble. Which big green thing? There’s a
small green thing; is that it? What are we attacking? You can greatly reduce the prob-
lem set by introducing a fixed suite of commands that the player can memorize and
limit all typed orders to using those commands. But then there are still the issues of
spelling errors and forgetfulness on the part of the players.

Then there’s the challenge of timeliness and input speed. It takes time to type in a
command. In action games, there is the well-known phenomenon called the tk or
“typing kill.” The player gets shot, stabbed, bent, folded, spindled, or otherwise muti-
lated while he’s typing in the chat window. Combat typing is certainly an acquired
skill, and it does tend to separate the cannon-fodder from the stenographers, but play-
ers are not going to love you for giving them an interface that gets them killed!

The simplest solution to the speed and danger issues of typing commands is to allow
for voice commands. Now you are getting into voice recognition, in addition to lan-
guage parsing and recognition, and so on. To top it off, many players might not have
the requisite hardware, like a microphone or a computer with a powerful enough
sound card.

A better way requires more design effort on the player side of things, with less effort
on the Al ally side, which yields more reliable results. Use a fixed set of commands,
with subcommands or options, and perhaps a pointing system that can extract infor-
mation about whatever a cursor is pointing at. This way you can ensure that all com-
mands and orders are understandable by the Al

You can utilize the pointing system in a few different ways. For example, use an
onscreen cursor to select who the command is for, choose the command from a
popup menu, then use the cursor to point to where the action is to take place or which
thing in the game world to attack, run to, or whatever.

The commands can be invoked by a key combination, like a macro, or by selection
from a GUI or popup menu in the player’s HUD display.

Working from a preset selection of likely commands, options, and information, with
a free-form point and select mechanism will save you a lot of development time and
grief. There is the risk of the loss of a certain amount of flexibility. But then, who
cares if you can’t order your Al ally to stand on its head and spit nickels, and have
him actually understand it, let alone do it?

163

164

Chapter 6 = Using Al in Games

Actions

Another ability of an Al ally is the same as an enemy’s chasing or following capabil-
ity. At the very least, you are going to want your ally to follow you when directed. It’s
not any easier for your friends to follow you than it is for your enemies, although at
first blush you might think so. After all, you aren’t actually trying to elude your friends!

However, it can happen that your ally will lose sight of you, or not be able to figure
out how to get around an obstacle to get to you or to where you are going. If this were
to happen to an enemy, you would be very glad for it, but you might not know that
you've lost the enemy for quite some time. The same could happen with an ally, but
this time you do want to know if he’s been held up!

So you need to enable your Al allies to do two things: detect when they are unable to
follow you any longer (they might be stuck, or they might be on the wrong side of a
locked gate or something) and then notify you of their predicament by sending you
a message of some kind. The best way to send the message would be by some in-game
system that already exists. If you have a “radio chat” window, then use that. Or maybe

have them holler something with a 3D sound effect. Or probably a combination of
both.

Path-finding and path-following are also important. At the very least, you need your
players to be able to indicate to their allies where they should go, by pointing-and-
clicking, typing in coordinates, or clicking on a spot in a GUI map. You could then
invoke a path-finding algorithm to enable the Al to actually travel to that location.

You may also want to give your players the ability to outline a path for the Al to fol-
low. This can be done in several ways. One method is to have the player point-and-
click to create waypoints in the game world, simply by looking at the locations and
clicking the mouse cursor. In a first-person shooter, this might be difficult, since some
of the waypoints may not be within the player’s line of sight. In that case, use a GUI
map and have the player point-and-click on that, setting up a series of waypoints to
be followed.

Card Carrying Party Members

Many role-playing games use the concept of the party, a group of people who are
closely associated with the player’s character, who move through the game with the
player. An example of this is shown in Figure 6.3, a screenshot from a game currently
in development, Minions of Mirth (which uses the Torque Game Engine), by Prairie
Games. Usually, each member of the party has different sets of skills, experience, and
other attributes, and all (except the player) are computer controlled.

What's a ‘Bot?

Figure 6.3 Minions of Mirth party.

Most of the Al aspects of these players are covered in the earlier sections entitled
“Opponents” and “Allies.” A critical factor to consider is the balance between the capa-
bilities of the party and the capabilities of the player.

You don’t want your party members to be dead weight. I have played some role-play-
ing games, which shall remain nameless, where the party members are pretty much
useless in terms of advancing in the game. They become nothing more than a bur-
den, something you have to defend and protect to keep alive, and then harangue and
cajole to keep moving. This becomes an unintended and highly frustrating challenge
for the player. You need to keep the party members moving along with the player, and
they need to be net contributors to the success of the player—not drains.

However, you also need to be mindful of making the party members too capable or
powerful. Remember, the fantasy is the player’s, not the AI’s! You don’t want a situa-
tion where the Al is pulling the player through the game and defeating all the mon-
sters. This becomes little more than a guided tour.

165

166

Chapter 6 = Using Al in Games

Group Behaviors

In Chapter 5, I pointed out that Al work in the area of group behavior—swarming
intelligence—attempts to mimic natural group dynamics. This is all well and good,
but what practical game-related possibilities are there?

Swarms

When I think about using swarms in games, two applications come instantly to mind:
The first is always swarms of flies buzzing around corpses that litter a battlefield, act-
ing as a kind of atmosphere-enhancing decoration; the second is schools of fish that
can be mere decorations or can be used as part of the gameplay in a game that
includes the ability to catch fish for food, sport, or profit.

Some of the interesting characteristics of swarm intelligence are the appearance of
emergent behaviors, behaviors that are observable and unambiguous, and yet not at
all anticipated by the game designers. Sometimes the observant behavior is pre-
dictable, once enough observations have been made. Emergent coordination is an
example of this, where the swarm reacts to some stimulus in a way that shows that
different members of the swarm influence other members to behave in specific sup-
portive ways. For example, a school of sharks that surrounds a larger prey without
attacking, and then they attack all at once from all directions, making it very difficult
for the prey to defend itself effectively.

An adventure game might throw you into a room full of swarming spiders, or a sci-
ence-fiction based shooter might inundate you with a swarm of mechanical ants.
With lasers. Ouch.

I think an under-addressed area of game design is the idea of analyzing player’s actions
in multiplayer games. Many games can have dozens or even hundreds of players work-
ing together in concert towards a common objective. Swarm intelligence techniques
could potentially be turned around and used to predict the actions of the players, as
a group (or swarm), and therefore tweak or otherwise manage resources, balance
servers, generate quests or maps, or any of a number of other possibilities.

Herds

Herd intelligence, as a variant of swarms, obviously exhibits the same parallels with
real-life models. Many games that may benefit from decorative use of herds of cows
and sheep, or even people, will employ herd intelligence.

Additionally, a game can even be all about herding. Imagine a game where you are a
cowboy on the open range, trying to get 10,000 head of cattle up to the stockyards in

What's a ‘Bot?

Kansas on the long open trails. Obviously, your challenge will be to overcome the
obstacles of terrain, weather, predators, rustlers, and other undesirables.

We all know how hard it is supposed to be to herd cats. Well, there’s a game idea right
there! If you don’t know how hard it is to herd cats, I'm told that it’s likely the same
level of difficulty as herding independent game developers.

Again, herd intelligence technology potentially might be used to predict player behav-
ior, especially in games where the players cooperate in a formalized structure of some
kind with designated leaders.

A Pain in the ‘Bot

Now, I need to address a touchy subject that surfaces often when I talk to people about
‘bots. The dark underbelly of the online computer gaming world is inhabited by
another kind of ‘bot—the cheatbot.

A cheatbot can be any one of many different kinds of ‘bots. Probably the most ubiq-
uitous and famous cheatbot is the aimbot. An aimbot is a computer program that is
written to run in memory in conjunction with a game, and it uses a screenscraper pro-
gram to try to identify targets on a game screen (using very primitive image pattern
recognition). An aimbot automatically moves the aiming cursor for a weapon'’s sights
to overlay a target, and track it. Some aimbots will even lead moving targets and auto-
matically fire for you as well.

Sometimes, the ‘bot is not a separate program but actually written with the game’s
own scripting language and implemented as part of the game’s client by the cheating
player!

There are few ways to prevent this kind of cheating, but the good news is that most
of the cheatbots, the aimbots in particular, are really only useful in a narrowly defined
range of gameplay types. Deathmatch is the gameplay type that is the easiest target
for an aimbot because every player on the screen is an enemy. More complex game-
play types, like capture the flag, flag ball, search and destroy, and so on are harder tar-
gets for cheaters because there is either less information available for the ‘bot to
analyze, or there is too much.

The aimbot in particular usually requires that the cheating player change the skins
(image textures) for enemy players on his client computer to make them stand out
on the screen so that the primitive image pattern-recognition software in the ‘bot can
detect the enemy. Usually the skins are created as one solid, rarely used color, like

bright pink or bright orange.

167

168

Chapter 6 = Using Al in Games

Moving Right Along

As you've seen in this chapter, a key component of Al design for games revolves
around perceiving or detecting changes in the game state and then acting or reacting
based upon the circumstances. If our Als have the ability to learn, then the challenge
of the game can increase dramatically.

We've explored the main issues surrounding computer-controlled game opponents
and allies, and what approaches we can take to communicate with them and control
them. There is a lot of similarity between Al opponents and allies, but some key dif-
ferences, mostly related to communication between players and the AI characters.

Parties are made up of a special kind of Al ally that is always under the player’s direc-
tion. Party members need to carry their own weight without doing the player’s job
for him. Otherwise, where’s the fun?

We've poked a bit at swarm intelligence, noting its usefulness in various ways as both
a tool to help create atmosphere or peripheral activity in a game (enhancing immer-
sion) and as a gameplay mechanism in its own right.

We've also explored some of the ways that Al-related terminology is used in differ-
ent game genres. There are many different meanings and usages for some words and
many different words that mean the same things, plus variations in between. Most of
the confusion springs from emergent usage of terminology in different disciplines
(Al research, software development, and game development) and game genres. There
is little standardization of terms, and this is not likely to change any time soon.
Perhaps when Al-acceleration hardware (the Al analog of 3D video adapters) and
standardized Al software libraries start surfacing, the terminology will settle down.

CHAPTER 7 i

ARTIFICIAL ENEMIES

s you probably gathered from Chapter 6, the range of Al behaviors that could

be encountered in enemies or opponents in computer games is a wide one.

If we toss them all into the pot and let it boil down, eventually we will get a
fairly short, but widely applicable list of behaviors:

= Stationary (guards, spies)
= Follows paths

= Free roaming

= Chases

Most of the other behaviors depend on one or more of those core behaviors, with
perhaps some modifications or enhancements.

In this chapter, we’ll implement each of these behaviors using TorqueScript, so
sharpen your keyboard.

Keep in mind that I will be addressing each of these techniques on its own. You prob-
ably should consider enhancing the capabilities with your own solutions. You prob-
ably should also consider generalizing the routines and applying them in the form of
a library of functions or a set of modified player classes. If you do this, you will want
to obtain a license for the Torque Game Engine and directly modify the AlPlayer class,
or derive new ones.

169

170

Chapter 7 ¢ Artificial Enemies

Stationary Al

Stationary Al is more useful than it might seem at first blush. Many games have things
like guard towers or shacks, pillbox gun turrets, and similar things that don’t need to
find their way around a game world. They just need to be able to patiently wait for
an appropriate target to wander into their sights so they can proceed to blast them
into oblivion—or at least give those targets the kind of headache that makes a fine
substitute for a “No Trespassing” sign.

So, let’s see if we can define some basic attributes of an Al guard. In my estimation,
they need to at least be able to:

= Visually detect potential threats (sense)

= Determine friend or foe (sense)

m Determine the level of threat (sense)

= Maintain a scan (assigned scan area) (action)
= Engage hostiles (players) (reaction)

® Detect when being engaged by hostiles (sense)

Now each of these capabilities will need some enabling script code, and in some cases
they will require certain properties to be assigned to either the Al character or to the
real player avatar objects, depending on the circumstances.

Notice that most of the capabilities are senses, with only one action and one reaction.

[want to talk about the ability to visually detect potential threats a bit. Of course, the
term “visually” is euphemistic at best. It really just embodies the notion of visual detec-
tion—a simulation. The sense should operate as if the computer characters were visu-
ally detecting things. Sometimes it is too easy for us as game designers to slip into a
state of mind where we treat software constructs as real beings. However, when we
are talking about simulating or modeling real-world behaviors, it is completely nec-
essary for us to work that way if we expect to achieve any degree of success.

Now, first we need to decide what constitutes a potential threat. In this case, we will
assume that all avatars, whether that of a player or those of the Al characters, are
potential threats. In the demo, we have only one kind of avatar, which will be used
by either the player or the Al so this is an easy one: All avatars are potential threats.
Also, there needs to be a maximum range beyond which another player can’t possi-
bly be a threat and therefore is not even a potential threat.

Stationary Al

So this sense needs to do one thing: detect when another player avatar is within the
potential threat range (maximum sense range). This is easy enough to do by employ-
ing a 360-degree scan and looking for player avatars out to the maximum sense range.
The technique we will use to accomplish this is to simply loop through the list of play-
ers, check their positions, and compare each to the position of the Al guy.

To support the sensing capabilities, we want each Al player to carry some attributes:
= Maximum vision range (some characters should be able to detect farther than
others)
= Minimum vision range (less than this and detection is 100%)
= Alertness (some characters are better at detecting things than others)
= Attention level (attention wanes as time passes without any action)
m Aggressiveness (some characters may try harder than others)

These attributes will be assignable on an individual basis and backed up by default
values if not specified for individual Al characters.

Preparation

We will also need to be able to specify where the guards will be placed. The best way
to do this is to place markers in the game world using the World Editor Creator, and
then from within TorqueScript, look up the positions of those markers and place an
Al character there. The advantages to this approach are manifold; here are a few:

= [t is easy to visually assess the suitability of a placement location.

= Using the World Editor Creator, the level or map designer can assign attribute
values to Al characters using dynamic properties.

® [t is easy to tweak and adjust placements after script code has been written
and testing starts.

And—even with a visual placement method—you still have a textual reference in the
mission file that is saved or created if it is necessary to view actual placement coor-
dinates.

1. To get going, start by launching the Torque demo program and run the FPS
demo, making sure to check the Create Server checkbox.

2. Once you are deposited in the game world, press the F11 key to open the Mis-
sion Editor, and then press F4 to switch to the World Editor Creator interface.

3. On the lower right side, open the selection tree by clicking on the little plus
signs and drilling down into Mission Objects, System, as shown in Figure 7.1.

171

172 Chapter 7 ¢ Artificial Enemies

Figure 7.1 Creating the AlDropPoints SimGroup.

4. Click on SimGroup, and you will get the Building Object dialog shown in Fig-
ure 7.1. Type AIDropPoints into the Object Name field, and then click OK.

Now press the F3 key to switch to the World Editor Inspector and take a look
at the tree list at upper right. You will now see an entry called AIDropPoints.
This is the new SimGroup.

What we want is to have the SpawnPoints that we create automatically
inserted into that SimGroup. All new objects inserted in the game world will
be inserted into the Instant Group, which by default is assigned to be the Mis-
sionGroup. We can assign any SimGroup to be the Instant Group. So, let’s
assign AIDropPoints to be the Instant Group:

5. Hold down the Alt key and click on the AIDropPoints entry. This will set
AlDropPoints to be the Instant Group and highlight its entry in the list in
light gray, as shown in Figure 7.2.

Now, with AIDropPoints set as the Instant Group, repeat steps 1 to 5 above and cre-
ate another SimGroup as a subgroup of AIDropPoints. Call this new Instant Group
“Guard,” and set it to be the Instant Group, as shown in Figure 7.3.

Stationary Al 173

Figure 7.2 AlDropPoints as Instant Group. Figure 7.3 Guard as Instant Group.

Tip

This technique of assigning SimGroups to be the Instant Group by using Alt+Click is a very
useful mission organization method, so you should practice it and use it as much as possible.

Guard is the only sub-SimGroup we will create inside the AIDropPoints for now. If
you create other Al types, you can use AIDropPoints and create your own SimGroups
in there,

Next up, let’s place some markers at which we will be programmatically placing Al
characters. As luck would have it, Torque provides a shape, an octahedron, called a
SpawnSphere that we can use:

1. Press the F11 key to exit the Mission Editor, and then press F8 to enter cam-
era fly mode.

2. Maneuver your way to a likely location to place an Al character. Make sure
you place yourself about 20 “feet” (about 3 or 4 character models worth) high
off the terrain, looking down at an angle to the spot where you want to place
a character spawn.

3. Switch back to the Mission Editor using F11.

Tip

You don't really need to keep switching back and forth between the Mission Editor and cam-
era fly mode. You can use camera fly mode from within the Editor. You just need to make sure
you right-click (press the right mouse button) and hold the button down while you move the
camera to change your view (remember that when you're not in the Editor, you don’t press
the right mouse button to change the camera view). The camera fly keys remain the same.

174 Chapter 7 ¢ Artificial Enemies

4. Enter the World Editor Creator by pressing F4 key.
5. In the tree list at bottom right, drill down to Shapes, Misc.

6. After ensuring that you are looking at exactly the spot in the game world
where you want to place the spawn marker, click once on SpawnSphere-
Marker. The marker will appear in the game world, surrounded by a huge red
wire-frame sphere, as shown in Figure 7.4. Note that in Figure 7.4, the actual
marker is the small item at center-screen with the ID label “2301 (null)”. The
number ID of your markers will likely be different.

1STPskR i)

Figure 7.4 Creating a spawn sphere.

Place your markers around the game world wherever you want. After you have them
positioned, you will probably want to reduce the size of the sphere that surrounds
each of the markers. Do this by selecting them all:

1. Switch to World Editor Inspector by pressing the F3 key.

2. Hold down the Ctrl key while clicking on their tree view entries in the tree list
at upper right until you have all of the spheres selected. Figure 7.5 shows two
spheres being selected.

Stationary Al 175

Figure 7.5 Selecting multiple spawn spheres.

3. Once you have the spheres selected, click on the Expand All button at the top
of the lower right panel.

4. Using Figure 7.6 as a guide, find the radius field in the dimensions group for
a selected spawn marker, delete whatever number is there, enter the value 10,
and press the Apply button. The radius entry for all of the spheres selected
will now have the new value.

Note

The radius of the spawn sphere creates an area within which the game engine will automat-
ically choose a set of X, Y, and Z coordinates at which to place the newly spawned player (or
in this case, Al character). The larger the sphere, the more potential places there are, and the
more random the placement of each individual character will seem.

When | want to be precise about where a player is spawned, | use a radius of 1. When | want
to be fairly certain where the player will appear, but want to ensure that the exact /ocation is
never the same, | go with a radius of 10.

Always make sure that the bottom of your spawn sphere is higher than the midpoint of the
spawning character. Otherwise, there is a chance that the character will spawn underground.
For best results, be even more careful and make sure that the bottom of the spawn sphere is
higher than the top of the character it will spawn.

176

Chapter 7 ¢ Artificial Enemies

[10537 67 070 180 655

1000

Figure 7.6 Spawn sphere with a radius of 10.

Next, you need to add some dynamic variables, or properties. Hopefully, you still have
all of your spawn markers selected; if not, please select them again in World Editor
Inspector (F3) mode. Scroll to the bottom of your properties list and add the dynamic
fields and values shown in Table 7.1, by pressing on the Add button, and filling in the
fields in the Add dynamic field dialog that appears (assuming you created three spawn
markers).

Table 7.1 Al Guard Dynamic Field Values

Name Value
aggression 100
range 100
attention 100
alertness 100

Save your work by choosing File, Save Mission from the Mission Editor’s menu, then
exit the Editor by pressing F11and hit the Escape key to exit the mission. Exit all the
way out of the demo back to your desktop before proceeding.

Stationary Al

Code Modifications

Later, we will add a TorqueScript code module to support our Al guard characters,
but before we do that, we need to make some small modifications to the demo in
order to use our new code module,

In the file \A3D\demo\server\scripts\game.cs, in the function onServerCreated, after
the line

exec("./crossbow.cs");

add

exec("./aiGuard.cs");

This will cause our new code module, aiGuard.cs, to be loaded when the server is
launched. Seeing as how our new code module is a server-side module (only runs on
the server, not on the client), this seems like an eminently good idea!

In the same file, game.cs, at the very end of the function startGame, after the line

$Game::Running = true;

add this line:

schedule(3000, 0, "CreateBots");

This will kick off the process of creating and placing Al “bots in the game at the loca-
tions specified by the spawn markers we inserted earlier. The command schedules a
call to the CreateBots function to be called 3000 milliseconds, or 3 seconds, after the
game is started. The CreateBots function is defined in the aiGuard.cs module.

The aiGuard Module

Next, type in the following code using your favorite text editor, and save it as
\A3D\demo\server\scripts\aiGuard.cs.

$debugSwitchlonStuck] = false;
$debugSwitch[unBlock] = false;
$debugSwitch[checkForThreat] = false;
$debugSwitch[DoScan] = false;
$debugSwitch[openFire] = false;
$debugSwitch[ceaseFire] = false;
$debugSwitchl{onTargetEnterL0S] = false;
$debugSwitch[onTargetExitL0S] = false;
$debugSwitch[spawn] = false;

177

178

Chapter 7 ¢ Artificial Enemies

$debugSwitch[Equip] = false;
$debugSwitch[GetTargetRange] = false;
$debugSwitch[getClosestEnemy] = false;
$debugSwitch[CreateBots] = false;
$debugSwitch[pickAISpawn] = false;
$debugSwitch[GetBearing] = false;
$debugSwitch[GetHeading] = false;
$debugSwitch[GetRelativeBearing] = false;
$debugSwitch[CheckArcOfSight] = false;
$debugSwitch[Misc] = false;

$ARC_OF_SIGHT = 120;

SMIN_SCAN_GAP = 1000;
$MAX_SCAN_GAP = 20000;
$MIN_TRIGGER_HOLD = 100;
$MAX_TRIGGER_HOLD